메뉴 건너뛰기




Volumn 58, Issue 5, 2009, Pages 577-600

Stability analysis of an additive spline model for respiratory health data by using knot removal

Author keywords

B splines; Generalized additive models; Knot removal; Log linear models; Replication stability; Respiratory health

Indexed keywords


EID: 70350173008     PISSN: 00359254     EISSN: 14679876     Source Type: Journal    
DOI: 10.1111/j.1467-9876.2009.00668.x     Document Type: Article
Times cited : (6)

References (37)
  • 1
    • 0024320123 scopus 로고
    • Bootstrap investigation of the stability of a Cox regression model
    • Altman, D. G. Andersen, P. K. (1989) Bootstrap investigation of the stability of a Cox regression model. Statist. Med., 8, 771 783.
    • (1989) Statist. Med. , vol.8 , pp. 771-783
    • Altman, D.G.1    Andersen, P.K.2
  • 2
    • 47749115294 scopus 로고    scopus 로고
    • Increasing the usefulness of additive spline models by knot removal
    • Binder, H. Sauerbrei, W. (2008) Increasing the usefulness of additive spline models by knot removal. Computnl Statist. Data Anal., 52, 5305 5318.
    • (2008) Computnl Statist. Data Anal. , vol.52 , pp. 5305-5318
    • Binder, H.1    Sauerbrei, W.2
  • 3
    • 37249080703 scopus 로고    scopus 로고
    • A comparison of methods for the fitting of generalized additive models
    • Binder, H. Tutz, G. (2008) A comparison of methods for the fitting of generalized additive models. Statist. Comput., 18, 87 99.
    • (2008) Statist. Comput. , vol.18 , pp. 87-99
    • Binder, H.1    Tutz, G.2
  • 4
    • 0019032952 scopus 로고
    • Inserting new knots into B-spline curves
    • no.
    • Boehm, W. (1980) Inserting new knots into B-spline curves. Comput. Aid. Desgn, 12, no. 4, 199 201.
    • (1980) Comput. Aid. Desgn , vol.12 , Issue.4 , pp. 199-201
    • Boehm, W.1
  • 6
    • 0002170887 scopus 로고
    • Fitting additive models to regression data
    • Breiman, L. (1993) Fitting additive models to regression data. Computnl Statist. Data Anal., 15, 13 46.
    • (1993) Computnl Statist. Data Anal. , vol.15 , pp. 13-46
    • Breiman, L.1
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996a) Bagging predictors. Mach. Learn., 24, 123 140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman, L. (1996b) Heuristics of instability and stabilization in model selection. Ann. Statist., 24, 2350 2383.
    • (1996) Ann. Statist. , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 9
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • Bühlmann, P. Yu, B. (2002) Analyzing bagging. Ann. Statist., 30, 927 961.
    • (2002) Ann. Statist. , vol.30 , pp. 927-961
    • Bühlmann, P.1    Yu, B.2
  • 11
    • 0021958612 scopus 로고
    • The bootstrap and identification of prognostic factors via Cox's proportional hazards regression model
    • Chen, C.-H. George, S. L. (1985) The bootstrap and identification of prognostic factors via Cox's proportional hazards regression model. Statist. Med., 4, 39 46.
    • (1985) Statist. Med. , vol.4 , pp. 39-46
    • Chen, C.-H.1    George, S.L.2
  • 14
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The.623+ boostrap method
    • Efron, B. Tibshirani, R. (1997) Improvements on cross-validation: the.623+ boostrap method. J. Am. Statist. Ass., 92, 548 560.
    • (1997) J. Am. Statist. Ass. , vol.92 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 15
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties
    • Eilers, P. H. C. Marx, B. D. (1996) Flexible smoothing with B-splines and penalties. Statist. Sci., 11, 89 121.
    • (1996) Statist. Sci. , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 18
  • 21
    • 33645024314 scopus 로고    scopus 로고
    • Assessing stability of gene selection in microarray data analysis
    • article 50.
    • Qiu, X., Xiao, Y., Gordon, A. Yakovlev, A. (2006) Assessing stability of gene selection in microarray data analysis. BMC Bioinform., 7, article 50.
    • (2006) BMC Bioinform. , vol.7
    • Qiu, X.1    Xiao, Y.2    Gordon, A.3    Yakovlev, A.4
  • 23
    • 0242300771 scopus 로고    scopus 로고
    • Quantifying epidemiologic risk factors using non-parametric regression: Model selection remains the greatest challenge
    • Rosenberg, P., Katki, H., Swanson, C. A., Brown, L. M., Wacholder, S. Hoover, R. N. (2003) Quantifying epidemiologic risk factors using non-parametric regression: model selection remains the greatest challenge. Statist. Med., 22, 3369 3381.
    • (2003) Statist. Med. , vol.22 , pp. 3369-3381
    • Rosenberg, P.1    Katki, H.2    Swanson, C.A.3    Brown, L.M.4    Wacholder, S.5    Hoover, R.N.6
  • 24
    • 0004509186 scopus 로고
    • Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling (with discussion)
    • Royston, P. Altman, D. G. (1994) Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling (with discussion). Appl. Statist., 43, 429 467.
    • (1994) Appl. Statist. , vol.43 , pp. 429-467
    • Royston, P.1    Altman, D.G.2
  • 25
    • 0037470273 scopus 로고    scopus 로고
    • Stability of multivariable fractional polynomial models with selection of variables and transformations: A bootstrap investigation
    • Royston, P. Sauerbrei, W. (2003) Stability of multivariable fractional polynomial models with selection of variables and transformations: a bootstrap investigation. Statist. Med., 22, 639 659.
    • (2003) Statist. Med. , vol.22 , pp. 639-659
    • Royston, P.1    Sauerbrei, W.2
  • 27
    • 0036921633 scopus 로고    scopus 로고
    • Selecting the number of knots for penalized splines
    • Ruppert, D. (2002) Selecting the number of knots for penalized splines. J. Computnl Graph. Statist., 11, 735 757.
    • (2002) J. Computnl Graph. Statist. , vol.11 , pp. 735-757
    • Ruppert, D.1
  • 29
    • 0033426505 scopus 로고    scopus 로고
    • The use of resampling methods to simplify regression models in medical statistics
    • Sauerbrei, W. (1999) The use of resampling methods to simplify regression models in medical statistics. Appl. Statist., 48, 313 329.
    • (1999) Appl. Statist. , vol.48 , pp. 313-329
    • Sauerbrei, W.1
  • 30
    • 0033474286 scopus 로고    scopus 로고
    • Building multivariable prognostic and diagnostic models: Transformation of the predictors by using fractional polynomials
    • Sauerbrei, W. Royston, P. (1999) Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials. J. R. Statist. Soc. A, 162, 71 94.
    • (1999) J. R. Statist. Soc. A , vol.162 , pp. 71-94
    • Sauerbrei, W.1    Royston, P.2
  • 31
    • 38849176100 scopus 로고    scopus 로고
    • Selection of important variables and determination of functional form for continuous predictors in multivariable model building
    • Sauerbrei, W., Royston, P. Binder, H. (2007) Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Statist. Med., 26, 5512 5528.
    • (2007) Statist. Med. , vol.26 , pp. 5512-5528
    • Sauerbrei, W.1    Royston, P.2    Binder, H.3
  • 32
    • 0027081755 scopus 로고
    • A bootstrap resampling procedure for model building: Application to the Cox regression model
    • Sauerbrei, W. Schumacher, M. (1992) A bootstrap resampling procedure for model building: application to the Cox regression model. Statist. Med., 11, 2093 2190.
    • (1992) Statist. Med. , vol.11 , pp. 2093-2190
    • Sauerbrei, W.1    Schumacher, M.2
  • 33
    • 0041382897 scopus 로고    scopus 로고
    • External validity of predictive models: A comparison of logistic regression, classification trees, and neural networks
    • Terrin, N., Schmid, C. H., Griffith, J. L., D'Agostino, R. D. Selker, H. P. (2003) External validity of predictive models: a comparison of logistic regression, classification trees, and neural networks. J. Clin. Epidem., 56, 721 729.
    • (2003) J. Clin. Epidem. , vol.56 , pp. 721-729
    • Terrin, N.1    Schmid, C.H.2    Griffith, J.L.3    D'Agostino, R.D.4    Selker, H.P.5
  • 34
    • 34250794605 scopus 로고    scopus 로고
    • Model selection for penalized spline smoothing using Akaike information criteria
    • Wager, C., Vaida, F. Kauermann, G. (2007) Model selection for penalized spline smoothing using Akaike information criteria Aust. New Zeal. J. Statist., 49, 173 190.
    • (2007) Aust. New Zeal. J. Statist. , vol.49 , pp. 173-190
    • Wager, C.1    Vaida, F.2    Kauermann, G.3
  • 35
    • 4944226585 scopus 로고    scopus 로고
    • Stable and efficient multiple smoothing parameter estimation for generalized additive models
    • Wood, S. N. (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Statist. Ass., 99, 673 686.
    • (2004) J. Am. Statist. Ass. , vol.99 , pp. 673-686
    • Wood, S.N.1
  • 37
    • 84971357232 scopus 로고
    • Prognostic models: Clinically useful or quickly forgotten
    • Wyatt, J. C. Altman, D. G. (1995) Prognostic models: clinically useful or quickly forgotten. Br. Med. J., 311, 1539 1541.
    • (1995) Br. Med. J. , vol.311 , pp. 1539-1541
    • Wyatt, J.C.1    Altman, D.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.