메뉴 건너뛰기




Volumn 29, Issue 10, 2005, Pages 2134-2143

Application of optimal RBF neural networks for optimization and characterization of porous materials

Author keywords

Characterization; Neural network; Optimization; Porous materials; Regularization network

Indexed keywords

ACOUSTIC NOISE; CARBON; NUMERICAL METHODS; OPTIMIZATION; POROUS MATERIALS;

EID: 25844513822     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2005.07.002     Document Type: Article
Times cited : (54)

References (35)
  • 5
    • 0028766863 scopus 로고
    • Use of neural networks for modeling of olefin polymerization in high pressure tubular reactors
    • W.M. Chan, and C.A.O. Nascimento Use of neural networks for modeling of olefin polymerization in high pressure tubular reactors Journal of Applied Polymer Science 53 1994 1277
    • (1994) Journal of Applied Polymer Science , vol.53 , pp. 1277
    • Chan, W.M.1    Nascimento, C.A.O.2
  • 6
    • 2942746174 scopus 로고    scopus 로고
    • Hydrogen sorption in MCM-41 by neutron diffraction study. Characterization of the porous structure of MCM-41 and the growth mode of the hydrogen confined phases
    • N. Floquet, J.P. Coulomb, and G. André Hydrogen sorption in MCM-41 by neutron diffraction study. Characterization of the porous structure of MCM-41 and the growth mode of the hydrogen confined phases Microporous and Mesoporous Materials 72 1-3 2004 143
    • (2004) Microporous and Mesoporous Materials , vol.72 , Issue.1-3 , pp. 143
    • Floquet, N.1    Coulomb, J.P.2    André, G.3
  • 8
    • 32044449925 scopus 로고
    • Generalized cross validation as a method for choosing a good ridge parameter
    • G.H. Golub, M. Heath, and G. Wahba Generalized cross validation as a method for choosing a good ridge parameter Technometrics 21 2 1979 215
    • (1979) Technometrics , vol.21 , Issue.2 , pp. 215
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 9
    • 0035445019 scopus 로고    scopus 로고
    • Neural network model for the on-line monitoring of a crystallization process
    • R. Guardani, R.S. Onimaru, and F.C.A. Crespo Neural network model for the on-line monitoring of a crystallization process Braz. J. Chem. Eng. 18 3 2001
    • (2001) Braz. J. Chem. Eng. , vol.18 , Issue.3
    • Guardani, R.1    Onimaru, R.S.2    Crespo, F.C.A.3
  • 12
    • 0040287998 scopus 로고
    • Artificial neural network models of knowledge representation in chemical engineering
    • D.M. Himmelblau, and J.C. Hoskins Artificial neural network models of knowledge representation in chemical engineering Computers and Chemical Engineering 12 1988 881
    • (1988) Computers and Chemical Engineering , vol.12 , pp. 881
    • Himmelblau, D.M.1    Hoskins, J.C.2
  • 14
    • 25844506545 scopus 로고    scopus 로고
    • Two-phase downflow and upflow fixed-bed reactors hydrodynamics modeling using artificial neural network
    • I. Iliuta şi, and V. Lavric Two-phase downflow and upflow fixed-bed reactors hydrodynamics modeling using artificial neural network Chem. Ind. 53 6 1999 76
    • (1999) Chem. Ind. , vol.53 , Issue.6 , pp. 76
    • Iliutaşi, I.1    Lavric, V.2
  • 15
    • 0007325418 scopus 로고    scopus 로고
    • Characterization of microporous carbons using adsorption at near ambient temperatures
    • J. Jagiello, T.J. Bandosz, and J.A. Schwarz Characterization of microporous carbons using adsorption at near ambient temperatures Langmuire 12 1996 2837
    • (1996) Langmuire , vol.12 , pp. 2837
    • Jagiello, J.1    Bandosz, T.J.2    Schwarz, J.A.3
  • 16
    • 23744466690 scopus 로고    scopus 로고
    • Characterization of porous materials using molecular theory and simulation
    • C.M. Lastoskie, and K.E. Gubbins Characterization of porous materials using molecular theory and simulation Advances in Chemical Engineering 28 2001 203
    • (2001) Advances in Chemical Engineering , vol.28 , pp. 203
    • Lastoskie, C.M.1    Gubbins, K.E.2
  • 17
    • 18844372544 scopus 로고    scopus 로고
    • The characterization of porous solids from gas adsorption measurements
    • C.K. Lee, A.S.T. Chiang, and C.S. Tsay The characterization of porous solids from gas adsorption measurements Key Engineering Materials 115 1996 21
    • (1996) Key Engineering Materials , vol.115 , pp. 21
    • Lee, C.K.1    Chiang, A.S.T.2    Tsay, C.S.3
  • 18
    • 0037908847 scopus 로고    scopus 로고
    • Long-term prediction of nonlinear hydrodynamics in bubble columns by using artificial neural networks
    • H.Y. Lin, W. Chen, and A. Tsutsumi Long-term prediction of nonlinear hydrodynamics in bubble columns by using artificial neural networks Chemical Engineering and Processing 42 8/9 2003
    • (2003) Chemical Engineering and Processing , vol.42 , Issue.89
    • Lin, H.Y.1    Chen, W.2    Tsutsumi, A.3
  • 19
    • 0035312859 scopus 로고    scopus 로고
    • Porous material characterization - Ultrasonic method for estimation of tortuosity and characteristic length using a barometric chamber
    • A. Moussatov, C. Ayrault, and B. Castagnede Porous material characterization - Ultrasonic method for estimation of tortuosity and characteristic length using a barometric chamber Ultrasonic 39 2001 195
    • (2001) Ultrasonic , vol.39 , pp. 195
    • Moussatov, A.1    Ayrault, C.2    Castagnede, B.3
  • 21
    • 0031046582 scopus 로고    scopus 로고
    • Use of neural networks in the analysis of particle size distributions by laser diffraction
    • C.A.O. Nascimento, R. Guardani, and M. Giulietti Use of neural networks in the analysis of particle size distributions by laser diffraction Powder Technology 90 1997 89
    • (1997) Powder Technology , vol.90 , pp. 89
    • Nascimento, C.A.O.1    Guardani, R.2    Giulietti, M.3
  • 24
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • T. Poggio, and F. Girosi Regularization algorithms for learning that are equivalent to multilayer networks Science 247 1990 978
    • (1990) Science , vol.247 , pp. 978
    • Poggio, T.1    Girosi, F.2
  • 25
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio, and F. Girosi Networks for approximation and learning Proceedings of the IEEE 78 1990 1481
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481
    • Poggio, T.1    Girosi, F.2
  • 26
    • 0027987576 scopus 로고
    • Pore size distribution of BPL activated carbon determined by different methods
    • B.P. Russel, and M.D. LeVan Pore size distribution of BPL activated carbon determined by different methods Carbon 32 1994 845
    • (1994) Carbon , vol.32 , pp. 845
    • Russel, B.P.1    Levan, M.D.2
  • 28
    • 25844483986 scopus 로고    scopus 로고
    • A novel method for predicting the optimum width of the isotropic Gaussian Regularization networks
    • Minsk, Belarus
    • A. Shahsavand A novel method for predicting the optimum width of the isotropic Gaussian Regularization networks Proceedings of the ICNN2003 Minsk, Belarus 2003
    • (2003) Proceedings of the ICNN2003
    • Shahsavand, A.1
  • 29
    • 25844513504 scopus 로고    scopus 로고
    • An optimal regularization network for hypersurface reconstruction
    • submitted for publication
    • Shahsavand, A., & Ahmadpour, A. (2005). An optimal regularization network for hypersurface reconstruction. NeuroComputing, submitted for publication.
    • (2005) NeuroComputing
    • Shahsavand, A.1    Ahmadpour, A.2
  • 30
    • 0038375098 scopus 로고    scopus 로고
    • Development of an artificial neural network correlation for prediction of overall gas holdup in bubble column reactors
    • A. Shaikh, and M. Al-Dahhan Development of an artificial neural network correlation for prediction of overall gas holdup in bubble column reactors Chemical Engineering and Processing 42 8/9 2003
    • (2003) Chemical Engineering and Processing , vol.42 , Issue.89
    • Shaikh, A.1    Al-Dahhan, M.2
  • 32
    • 84945283282 scopus 로고
    • The solution of adsorption integral equations by means of regularization method
    • M.V. Szombathely, P. Brauer, and M. Jeroniec The solution of adsorption integral equations by means of regularization method Journal of Computational Chemistry 13 1 1992 17
    • (1992) Journal of Computational Chemistry , vol.13 , Issue.1 , pp. 17
    • Szombathely, M.V.1    Brauer, P.2    Jeroniec, M.3
  • 33
    • 0038585070 scopus 로고    scopus 로고
    • Reinforcing the phenomenological consistency in artificial neural network modeling of multiphase reactors
    • L.A. Tarca, P.A. Grandjean, and F.V. Larachi Reinforcing the phenomenological consistency in artificial neural network modeling of multiphase reactors Chemical Engineering and Processing 42 8/9 2003
    • (2003) Chemical Engineering and Processing , vol.42 , Issue.89
    • Tarca, L.A.1    Grandjean, P.A.2    Larachi, F.V.3
  • 34
    • 0024905756 scopus 로고
    • A neural network methodology for process fault diagnosis
    • V. Venkatasubramanian, and K. Chan A neural network methodology for process fault diagnosis AIChE Journal 35 1993
    • (1993) AIChE Journal , vol.35
    • Venkatasubramanian, V.1    Chan, K.2
  • 35
    • 0024764296 scopus 로고
    • Incipient fault diagnosis of chemical engineering processes via artificial neural networks
    • K. Watanabe, I. Matsuura, M. Abe, M. Kubota, and D.M. Himmelblau Incipient fault diagnosis of chemical engineering processes via artificial neural networks AIChE Journal 35 11 1989 1803
    • (1989) AIChE Journal , vol.35 , Issue.11 , pp. 1803
    • Watanabe, K.1    Matsuura, I.2    Abe, M.3    Kubota, M.4    Himmelblau, D.M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.