-
1
-
-
34548103828
-
Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry
-
Alamo, J. C., R. Meili, B. Alonso-Latorre, J. Rodriguez, A. Aliseda, et al. 2007. Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. Proc. Natl. Acad. Sci. USA. 104:13343-13348.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 13343-13348
-
-
Alamo, J.C.1
Meili, R.2
Alonso-Latorre, B.3
Rodriguez, J.4
Aliseda, A.5
-
2
-
-
0033917881
-
Cell movement is guided by the rigidity of the substrate
-
Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. 2000. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144-152. (Pubitemid 30436733)
-
(2000)
Biophysical Journal
, vol.79
, Issue.1
, pp. 144-152
-
-
Lo, C.-M.1
Wang, H.-B.2
Dembo, M.3
Wang, Y.-L.4
-
3
-
-
21244432037
-
Collective movement of epithelial cells on a collagen gel substrate
-
DOI 10.1529/biophysj.104.047654
-
Haga, H., C. Irahara, R. Kobayashi, T. Nakagaki, and K. Kawabata. 2005. Collective movement of epithelial cells on a collagen gel substrate. Biophys. J. 88:2250-2256. (Pubitemid 40976231)
-
(2005)
Biophysical Journal
, vol.88
, Issue.3
, pp. 2250-2256
-
-
Haga, H.1
Irahara, C.2
Kobayashi, R.3
Nakagaki, T.4
Kawabata, K.5
-
4
-
-
33748933359
-
Transport of a 1D viscoelastic actin-myosin strip of gel as a model of a crawling cell
-
Larripa, K., and A. Mogilner. 2006. Transport of a 1D viscoelastic actin-myosin strip of gel as a model of a crawling cell. Physica A. 372:113-123.
-
(2006)
Physica A
, vol.372
, pp. 113-123
-
-
Larripa, K.1
Mogilner, A.2
-
5
-
-
21844458415
-
Multiscale 2D modeling of a motile simple shaped cell
-
Rubinstein, B., K. Jacobson, and A. Mogilner. 2005. Multiscale 2D modeling of a motile simple shaped cell. SIAM J. MMS. 3:413-439.
-
(2005)
SIAM J. MMS
, vol.3
, pp. 413-439
-
-
Rubinstein, B.1
Jacobson, K.2
Mogilner, A.3
-
6
-
-
36049049520
-
Collective migration of an epithelial monolayer in response to a model wound
-
Poujade, M., E. Grasland-Mongrain, A. Hertzog, J. Jouanneau, P. Chavrier, et al. 2007. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl. Acad. Sci. USA. 104:15988-15993.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 15988-15993
-
-
Poujade, M.1
Grasland-Mongrain, E.2
Hertzog, A.3
Jouanneau, J.4
Chavrier, P.5
-
7
-
-
36048965891
-
Collective cell migration patterns: Follow the leader
-
Gov, N. S. 2007. Collective cell migration patterns: follow the leader. Proc. Natl. Acad. Sci. USA. 104:15970-15971.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 15970-15971
-
-
Gov, N.S.1
-
8
-
-
33745714440
-
Role of boundary conditions in an experimental model of epithelial wound healing
-
Nikolie, D. L., A. N. Boettiger, D. Bar-Sagi, J. D. Carbeck, and S. Y. Shvartsman. 2006. Role of boundary conditions in an experimental model of epithelial wound healing. Am. J. Physiol. Cell Physiol. 291:C68-C75.
-
(2006)
Am. J. Physiol. Cell Physiol.
, vol.291
-
-
Nikolie, D.L.1
Boettiger, A.N.2
Bar-Sagi, D.3
Carbeck, J.D.4
Shvartsman, S.Y.5
-
9
-
-
14044271408
-
Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement
-
DOI 10.1242/jcs.01577
-
Farooqui, R., and G. Fenteany. 2005. Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell sheet movement. J. Cell Sci. 118:51-63. (Pubitemid 40277104)
-
(2005)
Journal of Cell Science
, vol.118
, Issue.1
, pp. 51-63
-
-
Farooqui, R.1
Fenteany, G.2
-
10
-
-
35048880557
-
Roles of wound geometry, wound size, and extracellular matrix in the healing response of bovine corneal endothelial cells in culture
-
Grasso, I., J. A. Hernandez, and S. Chifflet. 2007. Roles of wound geometry, wound size, and extracellular matrix in the healing response of bovine corneal endothelial cells in culture. Am. J. Physiol. Cell Physiol. 293:C1327-C1337.
-
(2007)
Am. J. Physiol. Cell Physiol.
, vol.293
-
-
Grasso, I.1
Hernandez, J.A.2
Chifflet, S.3
-
11
-
-
34047105209
-
Sheet migration by wounded monolayers as an emergent property of single-cell dynamics
-
DOI 10.1242/jcs.03395
-
Bindschadler, M., and J. L. McGrath. 2007. Sheet migration by wounded monolayers as an emergent property of single-cell dynamics. J. Cell Sci. 120:876-884. (Pubitemid 46523489)
-
(2007)
Journal of Cell Science
, vol.120
, Issue.5
, pp. 876-884
-
-
Bindschadler, M.1
McGrath, J.L.2
-
13
-
-
0025935485
-
Mathematical analysis of a basic model for epidermal wound healing
-
Sherratt, J. A., and J. D. Murray. 1991. Mathematical analysis of a basic model for epidermal wound healing. J. Math. Biol. 29:389-404.
-
(1991)
J. Math. Biol.
, vol.29
, pp. 389-404
-
-
Sherratt, J.A.1
Murray, J.D.2
-
14
-
-
0028574098
-
Mathematical modeling of corneal epithelial wound healing
-
Dale, P. D., P. K. Maini, and J. A. Sherratt. 1994. Mathematical modeling of corneal epithelial wound healing. Math. Biosci. 124:127-147.
-
(1994)
Math. Biosci.
, vol.124
, pp. 127-147
-
-
Dale, P.D.1
Maini, P.K.2
Sherratt, J.A.3
-
16
-
-
2342646187
-
Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells
-
Maini, P. K., D. L. S. McElwain, and D. Leavesley. 2004. Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Eng. 10:475-482.
-
(2004)
Tissue Eng.
, vol.10
, pp. 475-482
-
-
Maini, P.K.1
McElwain, D.L.S.2
Leavesley, D.3
-
17
-
-
33847688542
-
Multi-scale modeling of a wound-healing cell migration assay
-
Cai, A. Q., K. A. Landman, and B. D. Hughes. 2007. Multi-scale modeling of a wound-healing cell migration assay. J. Theor. Biol. 245:576-594.
-
(2007)
J. Theor. Biol.
, vol.245
, pp. 576-594
-
-
Cai, A.Q.1
Landman, K.A.2
Hughes, B.D.3
-
18
-
-
0000135489
-
Simulation of biological cell sorting using a two-dimensional extended Potts model
-
Graner, F., and J. A. Glazier. 1992. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69:2013-2016.
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 2013-2016
-
-
Graner, F.1
Glazier, J.A.2
-
19
-
-
0031557195
-
Modeling morphogenesis: From single cells to crawling slugs
-
Savill, N. J., and P. Hogeweg. 1997. Modeling morphogenesis: from single cells to crawling slugs. J. Theor. Biol. 184:229-235.
-
(1997)
J. Theor. Biol.
, vol.184
, pp. 229-235
-
-
Savill, N.J.1
Hogeweg, P.2
-
20
-
-
0036304182
-
Intercellular adhesion and cancer invasion: A discrete simulation using the extended Potts model
-
Turner, S., and J. A. Sherratt. 2002. Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J. Theor. Biol. 216:85-100.
-
(2002)
J. Theor. Biol.
, vol.216
, pp. 85-100
-
-
Turner, S.1
Sherratt, J.A.2
-
21
-
-
52149109469
-
Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the Compucell 3D modeling environment mathematical biosciences
-
Popalawski, N. J., A. Shirinifard, M. Swat, and J. A. Glazier. 2008. Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the Compucell 3D modeling environment mathematical biosciences. Math. Biosci. Eng. 5:355-388.
-
(2008)
Math. Biosci. Eng.
, vol.5
, pp. 355-388
-
-
Popalawski, N.J.1
Shirinifard, A.2
Swat, M.3
Glazier, J.A.4
-
22
-
-
0142094696
-
Improving the realism of the cellular Potts model in simulations of biological cells
-
Ouchia, N. B., J. A. Glazier, J. P. Rieu, A. Upadhyaya, and Y. Sawada. 2003. Improving the realism of the cellular Potts model in simulations of biological cells. Physica A. 329:451-458.
-
(2003)
Physica A
, vol.329
, pp. 451-458
-
-
Ouchia, N.B.1
Glazier, J.A.2
Rieu, J.P.3
Upadhyaya, A.4
Sawada, Y.5
-
23
-
-
42749107559
-
From a discrete to a continuous model of biological cell movement
-
Turner, S., J. A. Sherratt, and K. J. Painter. 2004. From a discrete to a continuous model of biological cell movement. Phys. Rev. E. 69:021910.
-
(2004)
Phys. Rev. E.
, vol.69
, pp. 021910
-
-
Turner, S.1
Sherratt, J.A.2
Painter, K.J.3
-
24
-
-
33646348131
-
Multiscale dynamics of biological cells with chemotactic interactions: From a discrete stochastic model to a continuous description
-
Alber, M. S., N. Chen, T. Glimm, and P. M. Lushnikov. 2006. Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description. Phys. Rev. E. 73:051901.
-
(2006)
Phys. Rev. E.
, vol.73
, pp. 051901
-
-
Alber, M.S.1
Chen, N.2
Glimm, T.3
Lushnikov, P.M.4
-
25
-
-
35348964624
-
Continuous macroscopic limit of a discrete stochastic model for interaction of living cells
-
Alber, M. S., N. Chen, P. M. Lushnikov, and S. A. Newman. 2007. Continuous macroscopic limit of a discrete stochastic model for interaction of living cells. Phys. Rev. Lett. 99:168102.
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 168102
-
-
Alber, M.S.1
Chen, N.2
Lushnikov, P.M.3
Newman, S.A.4
-
26
-
-
2442700260
-
Compucell, a multi-model framework for simulation of morphogenesis
-
Izaguirre, J. A., R. Chaturvedi, C. Huang, T. Cickovski, J. Coffland, et al. 2004. Compucell, a multi-model framework for simulation of morphogenesis. Bioinformatics. 20:1129-1137.
-
(2004)
Bioinformatics
, vol.20
, pp. 1129-1137
-
-
Izaguirre, J.A.1
Chaturvedi, R.2
Huang, C.3
Cickovski, T.4
Coffland, J.5
-
27
-
-
30344466626
-
A framework for three-dimensional simulation of morphogenesis
-
Cickovski, T. M., C.Huang, R. Chaturvedi, T. Glimm, H. G. E. Hentschel, et al. 2005. A framework for three-dimensional simulation of morphogenesis. Trans. Comp. Biol. Bioinform. 2:273-288.
-
(2005)
Trans. Comp. Biol. Bioinform.
, vol.2
, pp. 273-288
-
-
Cickovski, T.M.1
Huang, C.2
Chaturvedi, R.3
Glimm, T.4
Hentschel, H.G.E.5
-
28
-
-
0142011812
-
Cell and molecular mechanics of biological materials
-
Bao, G., and S. Surech. 2003. Cell and molecular mechanics of biological materials. Nat. Mater. 2:715-725.
-
(2003)
Nat. Mater.
, vol.2
, pp. 715-725
-
-
Bao, G.1
Surech, S.2
-
30
-
-
5744249209
-
Equation of state calculations by fast computing machines
-
Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1951. Equation of state calculations by fast computing machines. J. Chem. Phys. 21:1087-1092.
-
(1951)
J. Chem. Phys.
, vol.21
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
31
-
-
34548394796
-
The Glazier-Graner-Hogeweg model: Extensions, future directions, and opportunities for further study
-
A. R. A. Anderson, M. A. J. Chaplain, and K. J. Rejniak, editors. Birkhäuser, Springer, New York
-
Balter, A., R. M. H. Merks, N. J. Popalawski, M. Swat, and J. Glazier. 2007. The Glazier-Graner-Hogeweg model: extensions, future directions, and opportunities for further study. In Single Cell-Based Model in Biology and Medicine. A. R. A. Anderson, M. A. J. Chaplain, and K. J. Rejniak, editors. Birkhäuser, Springer, New York. 151.
-
(2007)
Single Cell-Based Model in Biology and Medicine
, pp. 151
-
-
Balter, A.1
Merks, R.M.H.2
Popalawski, N.J.3
Swat, M.4
Glazier, J.5
-
33
-
-
70350009099
-
Curved inclusions surf membrane waves
-
Shlomovitz, R., and N. S. Gov. 2008. Curved inclusions surf membrane waves. Europhys. Lett. 84:58008.
-
(2008)
Europhys. Lett.
, vol.84
, pp. 58008
-
-
Shlomovitz, R.1
Gov, N.S.2
-
34
-
-
4243679719
-
Pattern formation in Dictyostelium via the dynamics of cooperative biological entities
-
Kessler, D. A., and H. Levine. 1993. Pattern formation in Dictyostelium via the dynamics of cooperative biological entities. Phys. Rev. E. 48:4801-4804.
-
(1993)
Phys. Rev. E.
, vol.48
, pp. 4801-4804
-
-
Kessler, D.A.1
Levine, H.2
-
35
-
-
0031794851
-
Possible cooperation of differential adhesion and chemotaxis in mound formation of Dictyostelium
-
Jiang, Y., H. Levine, and J. Glazier. 1998. Possible cooperation of differential adhesion and chemotaxis in mound formation of Dictyostelium. Biophys. J. 75:2615-2625. (Pubitemid 28548934)
-
(1998)
Biophysical Journal
, vol.75
, Issue.6
, pp. 2615-2625
-
-
Jiang, Y.1
Levine, H.2
Glazier, J.3
-
37
-
-
0030088237
-
Stability of confined swirling flow with and without vortex breakdown
-
Gelfat, A. Y., P. Z. Bar-Yoseph, and A. Solan. 1996. Stability of confined swirling flow with and without vortex breakdown. J. Fluid Mech. 311:1-36. (Pubitemid 126477846)
-
(1996)
Journal of Fluid Mechanics
, vol.311
, pp. 1-36
-
-
Gelfgat, A.Y.1
Bar-Yoseph, P.Z.2
Solan, A.3
-
38
-
-
67650227472
-
Physical forces during collective cell migration
-
10.1038/NPHYS1269
-
Trepat, X., M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, et al. 2009. Physical forces during collective cell migration. Nat. Phys. 10.1038/NPHYS1269.
-
(2009)
Nat. Phys.
-
-
Trepat, X.1
Wasserman, M.R.2
Angelini, T.E.3
Millet, E.4
Weitz, D.A.5
|