-
1
-
-
0001085322
-
-
P. Arya, J. Boyer, F. Carre, R. Corriu, G. Lanneau, J. Lapasset, M. Perrot, C. Priou, Angew. Chem. 1989, 101, 1069
-
(1989)
Angew. Chem
, vol.101
, pp. 1069
-
-
Arya, P.1
Boyer, J.2
Carre, F.3
Corriu, R.4
Lanneau, G.5
Lapasset, J.6
Perrot, M.7
Priou, C.8
-
3
-
-
0036003348
-
-
N. Tokitoh, T. Sadahiro, K. Hatano, T. Sasaki, N. Takeda, R. Okazaki, Chem. Lett. 2002, 34.
-
(2002)
Chem. Lett
, pp. 34
-
-
Tokitoh, N.1
Sadahiro, T.2
Hatano, K.3
Sasaki, T.4
Takeda, N.5
Okazaki, R.6
-
4
-
-
33845929778
-
-
T. Iwamoto, K. Sato, S. Ishida, C. Kabuto, M. Kira, J. Am. Chem. Soc. 2006, 128, 16914.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 16914
-
-
Iwamoto, T.1
Sato, K.2
Ishida, S.3
Kabuto, C.4
Kira, M.5
-
5
-
-
54549086650
-
-
S. Yao, Y. Xiong, M. Brym, M. Driess, Chem. Asian J. 2008, 3, 113.
-
(2008)
Chem. Asian J
, vol.3
, pp. 113
-
-
Yao, S.1
Xiong, Y.2
Brym, M.3
Driess, M.4
-
6
-
-
33746894508
-
-
W. Li, N.J. Hill, A.C. Tomasik, G. Bikzhanova, R. West, Organometallics 2006, 25, 3802.
-
(2006)
Organometallics
, vol.25
, pp. 3802
-
-
Li, W.1
Hill, N.J.2
Tomasik, A.C.3
Bikzhanova, G.4
West, R.5
-
7
-
-
0032539236
-
-
M. Haaf, A. Schmiedl, T. A. Schmedake, D. R. Powell, A. J. Millevolte, M. Denk, R. West, J. Am. Chem. Soc. 1998, 120, 12714.
-
(1998)
J. Am. Chem. Soc
, vol.120
, pp. 12714
-
-
Haaf, M.1
Schmiedl, A.2
Schmedake, T.A.3
Powell, D.R.4
Millevolte, A.J.5
Denk, M.6
West, R.7
-
8
-
-
36248975619
-
-
For related tautomeric shifts in silanoic acid, see
-
For related tautomeric shifts in silanoic acid, see: Q.-G. Li, C. Deng, Y. Ren, N.-B. Wong, S.-Y. Chu, X. Wang, Int. J. Quantum Chem. 2008, 108, 142.
-
(2008)
Int. J. Quantum Chem
, vol.108
, pp. 142
-
-
Li, Q.-G.1
Deng, C.2
Ren, Y.3
Wong, N.-B.4
Chu, S.-Y.5
Wang, X.6
-
9
-
-
70349938824
-
-
Computations were carried out using Gaussian03 (Revision D.01): M. J. Frisch et al. (see Supporting Information).
-
Computations were carried out using Gaussian03 (Revision D.01): M. J. Frisch et al. (see Supporting Information).
-
-
-
-
10
-
-
70349962472
-
-
The addition of water across a Si-N bond is not expected to give intramolecularly stabilized silicon compounds, as calculations at the B3LYP/6-311, G(d,p) level predict that the product of this water addition features a tetracoordinated silicon atom and that it is stabilized by a intramolecular Si-OH ⋯ NH hydrogen bridge. Details of this reaction will be published elsewhere
-
The addition of water across a Si-N bond is not expected to give intramolecularly stabilized silicon compounds, as calculations at the B3LYP/6-311 + G(d,p) level predict that the product of this water addition features a tetracoordinated silicon atom and that it is stabilized by a intramolecular Si-OH ⋯ NH hydrogen bridge. Details of this reaction will be published elsewhere.
-
-
-
-
11
-
-
70349927900
-
-
3.
-
3.
-
-
-
-
12
-
-
41149155364
-
-
see
-
see: S. Yao, M. Brym, C. van Wüllen, M. Driess, Angew. Chem. 2007, 119, 4237.
-
(2007)
Angew. Chem
, vol.119
, pp. 4237
-
-
Yao, S.1
Brym, M.2
van Wüllen, C.3
Driess, M.4
|