메뉴 건너뛰기




Volumn 346, Issue 9, 2009, Pages 898-913

Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques

Author keywords

Feed forward artificial neural networks; Initial boundary value problems; Multidimensional optimization; Time dependent system of partial differential equations

Indexed keywords

ADJUSTABLE PARAMETERS; APPROXIMATE SOLUTION; ARTIFICIAL NEURAL NETWORK; BIHARMONIC EQUATIONS; COLLOCATION METHOD; FEED FORWARD ARTIFICIAL NEURAL NETWORKS; HYBRID METHOD; INITIAL VALUES; INITIAL-BOUNDARY VALUE PROBLEMS; MULTIDIMENSIONAL OPTIMIZATION; NUMERICAL EFFICIENCY; OPTIMAL VALUES; OPTIMIZATION TECHNIQUES; SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS; TEST PROBLEM; TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS; TIME-DEPENDENT SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS;

EID: 70349778465     PISSN: 00160032     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jfranklin.2009.05.003     Document Type: Article
Times cited : (106)

References (51)
  • 1
    • 0028396502 scopus 로고
    • Neural-network-based approximations for solving partial differential equations
    • Dissanayake M.W.M.G., and Phan-Thien N. Neural-network-based approximations for solving partial differential equations. Commun. Numer. Methods Eng. 10 (1994) 195-201
    • (1994) Commun. Numer. Methods Eng. , vol.10 , pp. 195-201
    • Dissanayake, M.W.M.G.1    Phan-Thien, N.2
  • 2
    • 4243809461 scopus 로고
    • Neural network differential equation and plasma equilibrium solver
    • Van Milligen B.P., Tribaldos V., and Jimenez J.A. Neural network differential equation and plasma equilibrium solver. Phys. Rev. Lett. 75 20 (1995) 3594-3597
    • (1995) Phys. Rev. Lett. , vol.75 , Issue.20 , pp. 3594-3597
    • Van Milligen, B.P.1    Tribaldos, V.2    Jimenez, J.A.3
  • 3
    • 0032165970 scopus 로고    scopus 로고
    • Artificial neural networks for solving ordinary and partial differential equations
    • Lagaris I.E., Likas A., and Fotiadis D.I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Network 9 5 (1998) 987-1000
    • (1998) IEEE Trans. Neural Network , vol.9 , Issue.5 , pp. 987-1000
    • Lagaris, I.E.1    Likas, A.2    Fotiadis, D.I.3
  • 4
    • 0034019550 scopus 로고    scopus 로고
    • Multilayer neural networks for solving a class of partial differential equations
    • He S., Reif K., and Unbehauen R. Multilayer neural networks for solving a class of partial differential equations. Neural Network 13 (2000) 385-396
    • (2000) Neural Network , vol.13 , pp. 385-396
    • He, S.1    Reif, K.2    Unbehauen, R.3
  • 5
    • 0035366291 scopus 로고    scopus 로고
    • Approximate solution of Hamilton-Jacobi-Bellman equation by using neural networks and matrix calculus techniques
    • Wang X., and Shimizu K. Approximate solution of Hamilton-Jacobi-Bellman equation by using neural networks and matrix calculus techniques. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E 84-A 6 (2001) 1549-1556
    • (2001) IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E , vol.84 -A , Issue.6 , pp. 1549-1556
    • Wang, X.1    Shimizu, K.2
  • 6
    • 0035575919 scopus 로고    scopus 로고
    • Neural network method for solving partial differential equations
    • Aarts L.P., and Van der Veer P. Neural network method for solving partial differential equations. Neural Process. Lett. 14 (2001) 261-271
    • (2001) Neural Process. Lett. , vol.14 , pp. 261-271
    • Aarts, L.P.1    Van der Veer, P.2
  • 7
    • 0037106177 scopus 로고    scopus 로고
    • Novel determination of differential-equation solutions: universal approximation method
    • Leephakpreeda T. Novel determination of differential-equation solutions: universal approximation method. J. Comput. Appl. Math. 146 (2002) 443-457
    • (2002) J. Comput. Appl. Math. , vol.146 , pp. 443-457
    • Leephakpreeda, T.1
  • 8
    • 0038246384 scopus 로고    scopus 로고
    • Solving differential equations with unsupervised neural networks
    • Parisi D.R., Mariani M.C., and Laborde M.A. Solving differential equations with unsupervised neural networks. Chem. Eng. Process. 42 (2003) 715-721
    • (2003) Chem. Eng. Process. , vol.42 , pp. 715-721
    • Parisi, D.R.1    Mariani, M.C.2    Laborde, M.A.3
  • 9
    • 0037804064 scopus 로고    scopus 로고
    • Solving the nonlinear Schrodinger equation with an unsupervised neural network: estimation of error in solution
    • Monterola C., and Saloma C. Solving the nonlinear Schrodinger equation with an unsupervised neural network: estimation of error in solution. Opt. Commun. 222 (2003) 331-339
    • (2003) Opt. Commun. , vol.222 , pp. 331-339
    • Monterola, C.1    Saloma, C.2
  • 10
    • 0242365793 scopus 로고    scopus 로고
    • The solutions of vibration control problems using artificial neural networks
    • Alli H., Ucar A., and Demir Y. The solutions of vibration control problems using artificial neural networks. J. Franklin Inst. 340 (2003) 307-325
    • (2003) J. Franklin Inst. , vol.340 , pp. 307-325
    • Alli, H.1    Ucar, A.2    Demir, Y.3
  • 11
    • 0346750593 scopus 로고    scopus 로고
    • Computation of boundary control of controlled heat equation using artificial neural networks
    • Sukavanam N., and Panwar V. Computation of boundary control of controlled heat equation using artificial neural networks. Int. Commun. Heat Mass Transfer 30 8 (2003) 1137-1146
    • (2003) Int. Commun. Heat Mass Transfer , vol.30 , Issue.8 , pp. 1137-1146
    • Sukavanam, N.1    Panwar, V.2
  • 12
    • 3042634773 scopus 로고    scopus 로고
    • Modelling the dynamics of nonlinear partial differential equations using neural networks
    • Smaoui N., and Al-Enezi S. Modelling the dynamics of nonlinear partial differential equations using neural networks. J. Comput. Appl. Math. 170 (2004) 27-58
    • (2004) J. Comput. Appl. Math. , vol.170 , pp. 27-58
    • Smaoui, N.1    Al-Enezi, S.2
  • 13
    • 10844226380 scopus 로고    scopus 로고
    • A hybrid neural network model for the dynamics of the Kuramoto-Sivashinsky equation
    • Smaoui N. A hybrid neural network model for the dynamics of the Kuramoto-Sivashinsky equation. Math. Probl. Eng. 3 (2004) 305-321
    • (2004) Math. Probl. Eng. , vol.3 , pp. 305-321
    • Smaoui, N.1
  • 14
    • 34547095501 scopus 로고    scopus 로고
    • Least squares solutions of the HJB equation with neural-network value-function approximators
    • Tassa Y., and Erez T. Least squares solutions of the HJB equation with neural-network value-function approximators. IEEE Trans. Neural Network 18 4 (2007) 1031-1041
    • (2007) IEEE Trans. Neural Network , vol.18 , Issue.4 , pp. 1031-1041
    • Tassa, Y.1    Erez, T.2
  • 15
    • 40949086430 scopus 로고    scopus 로고
    • On a neural approximator to ODEs
    • Filici C. On a neural approximator to ODEs. IEEE Trans. Neural Network 19 3 (2008) 539-543
    • (2008) IEEE Trans. Neural Network , vol.19 , Issue.3 , pp. 539-543
    • Filici, C.1
  • 16
    • 33845415634 scopus 로고    scopus 로고
    • Numerical solution for high order differential equations using a hybrid neural network-optimization method
    • Malek A., and Shekari Beidokhti R. Numerical solution for high order differential equations using a hybrid neural network-optimization method. Appl. Math. Comput. 183 (2006) 260-271
    • (2006) Appl. Math. Comput. , vol.183 , pp. 260-271
    • Malek, A.1    Shekari Beidokhti, R.2
  • 17
    • 0005669277 scopus 로고    scopus 로고
    • VLSI implementation of locally connected neural network for solving partial differential equations
    • Yentis R., and Zaghoul M.E. VLSI implementation of locally connected neural network for solving partial differential equations. IEEE Trans. Circ. Syst. Fund. Theor. Appl. 43 8 (1996) 687-690
    • (1996) IEEE Trans. Circ. Syst. Fund. Theor. Appl. , vol.43 , Issue.8 , pp. 687-690
    • Yentis, R.1    Zaghoul, M.E.2
  • 26
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch W.S., and Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5 (1943) 115-133
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 30
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • Hornik K., Stinchcombe M., and White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Network 3 (1990) 551-560
    • (1990) Neural Network , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 31
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Network 2 5 (1989) 359-366
    • (1989) Neural Network , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 32
    • 0025857963 scopus 로고
    • Arbitrary nonlinearity is sufficient to represent all functions by neural networks: a theorem
    • Kreinovich V.Y. Arbitrary nonlinearity is sufficient to represent all functions by neural networks: a theorem. Neural Network 4 (1991) 381-383
    • (1991) Neural Network , vol.4 , pp. 381-383
    • Kreinovich, V.Y.1
  • 33
    • 0025747581 scopus 로고
    • Approximation theory and feed forward networks
    • Blum E.K., and Li L.K. Approximation theory and feed forward networks. Neural Network 4 (1991) 511-515
    • (1991) Neural Network , vol.4 , pp. 511-515
    • Blum, E.K.1    Li, L.K.2
  • 34
    • 0001321136 scopus 로고
    • On the representation of continuous functions of several variables by superpositions of continuous functions of one variable and addition
    • (English Translation: Am. Math. Soc. Transl. 28 (2) (1963) 55-59)
    • Kolmogorov A.N. On the representation of continuous functions of several variables by superpositions of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR 114 (1957) 953-956 (English Translation: Am. Math. Soc. Transl. 28 (2) (1963) 55-59)
    • (1957) Dokl. Akad. Nauk SSSR , vol.114 , pp. 953-956
    • Kolmogorov, A.N.1
  • 35
    • 84968510856 scopus 로고
    • On the structure of continuous functions of several variables
    • Sprecher D.A. On the structure of continuous functions of several variables. Trans. Amer. Math. Soc. 115 (1965) 340-355
    • (1965) Trans. Amer. Math. Soc. , vol.115 , pp. 340-355
    • Sprecher, D.A.1
  • 37
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann R.P. An introduction to computing with neural nets. IEEE ASSP Mag. (1987) 4-22
    • (1987) IEEE ASSP Mag. , pp. 4-22
    • Lippmann, R.P.1
  • 38
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2 4 (1989) 304-314
    • (1989) Math. Control Signals Syst. , vol.2 , Issue.4 , pp. 304-314
    • Cybenko, G.1
  • 39
    • 0031277459 scopus 로고    scopus 로고
    • Some numerical aspects of the training problem for feed-forward neural nets
    • McKeown J.J., Stella F., and Hall G. Some numerical aspects of the training problem for feed-forward neural nets. Neural Network 10 8 (1997) 1455-1463
    • (1997) Neural Network , vol.10 , Issue.8 , pp. 1455-1463
    • McKeown, J.J.1    Stella, F.2    Hall, G.3
  • 43
    • 0031653036 scopus 로고    scopus 로고
    • Neural-network training and simulation using a multidimensional optimization system
    • Likas A., Karras D.A., and Lagaris I.E. Neural-network training and simulation using a multidimensional optimization system. Int. J. Comput. Math. 67 (1998) 33-46
    • (1998) Int. J. Comput. Math. , vol.67 , pp. 33-46
    • Likas, A.1    Karras, D.A.2    Lagaris, I.E.3
  • 44
    • 0028292832 scopus 로고
    • Minimization methods for training feedforward neural networks
    • Van der Smagt P. Minimization methods for training feedforward neural networks. Neural Network 7 1 (1994) 1-11
    • (1994) Neural Network , vol.7 , Issue.1 , pp. 1-11
    • Van der Smagt, P.1
  • 46
    • 21844490120 scopus 로고
    • Pseudospectral collocation methods for fourth-order differential equations
    • Malek A., and Phillips T.N. Pseudospectral collocation methods for fourth-order differential equations. IMA J. Numer. Anal. 15 (1995) 523-553
    • (1995) IMA J. Numer. Anal. , vol.15 , pp. 523-553
    • Malek, A.1    Phillips, T.N.2
  • 47
    • 0041300464 scopus 로고
    • Multidomain collocation methods for the stream function formulation of the Navier-Stokes equations
    • Phillips T.N., and Malek A. Multidomain collocation methods for the stream function formulation of the Navier-Stokes equations. SIAM J. Sci. Comput. 16 4 (1995) 773-797
    • (1995) SIAM J. Sci. Comput. , vol.16 , Issue.4 , pp. 773-797
    • Phillips, T.N.1    Malek, A.2
  • 48
    • 0042227250 scopus 로고    scopus 로고
    • Pseudospectral analysis for the solution of nonlinear partial differential equations
    • Malek A. Pseudospectral analysis for the solution of nonlinear partial differential equations. Nonlinear Anal. Theory Methods Appl. 30 8 (1997) 4805-4809
    • (1997) Nonlinear Anal. Theory Methods Appl. , vol.30 , Issue.8 , pp. 4805-4809
    • Malek, A.1
  • 49
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder J.A., and Mead R. A simplex method for function minimization. Comput. J. 7 (1965) 308-313
    • (1965) Comput. J. , vol.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 50
    • 0032251894 scopus 로고    scopus 로고
    • Convergence properties of the Nelder-Mead simplex method in low dimensions
    • Lagarias J.C., Reeds J.A., Wright M.H., and Wright P.E. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9 1 (1998) 112-147
    • (1998) SIAM J. Optim. , vol.9 , Issue.1 , pp. 112-147
    • Lagarias, J.C.1    Reeds, J.A.2    Wright, M.H.3    Wright, P.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.