메뉴 건너뛰기




Volumn 19, Issue 3, 2008, Pages 539-543

On a neural approximator to ODEs

Author keywords

Error bound; Neural network; Ordinary differential equation (ODE); Stability

Indexed keywords

APPROXIMATION THEORY; ASYMPTOTIC STABILITY; ORDINARY DIFFERENTIAL EQUATIONS; PROBLEM SOLVING;

EID: 40949086430     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2007.915109     Document Type: Article
Times cited : (20)

References (20)
  • 2
    • 0024880831 scopus 로고
    • Multilayer feedforwad networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforwad networks are universal approximators," Neural Netw., no. 2, 1989.
    • (1989) Neural Netw , Issue.2
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 3
    • 0025627940 scopus 로고
    • Universal approx. of an unknown mapping and its derivatives using multilayer feedforward networks
    • K. Hornik, M. Stinchcombe, and H. White, "Universal approx. of an unknown mapping and its derivatives using multilayer feedforward networks," Neural Netw., no. 3, 1990.
    • (1990) Neural Netw , Issue.3
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 4
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Netw., no. 4, pp. 251-257, 1991.
    • (1991) Neural Netw , Issue.4 , pp. 251-257
    • Hornik, K.1
  • 5
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K. O. Funahashi, "On the approximate realization of continuous mappings by neural networks," Neural Netw., no. 2, pp. 183-192, 1989.
    • (1989) Neural Netw , Issue.2 , pp. 183-192
    • Funahashi, K.O.1
  • 6
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, "Approximation by superpositions of a sigmoidal function," Math. Control Signal Syst., no. 2, pp. 303-314, 1989.
    • (1989) Math. Control Signal Syst , Issue.2 , pp. 303-314
    • Cybenko, G.1
  • 7
    • 0032165970 scopus 로고    scopus 로고
    • Artificial neural networks for solving ordinary and partial differential equations
    • Sep
    • I. Lagaris, A. Likas, and D. Fotiadis, "Artificial neural networks for solving ordinary and partial differential equations," IEEE Trans. Neural Netw., vol. 9, no. 5, pp. 987-1000, Sep. 1998.
    • (1998) IEEE Trans. Neural Netw , vol.9 , Issue.5 , pp. 987-1000
    • Lagaris, I.1    Likas, A.2    Fotiadis, D.3
  • 8
    • 0034270127 scopus 로고    scopus 로고
    • Neural-network methods for solving boundary value problems with irregular boundaries
    • Sep
    • I. Lagaris, A. Likas, and D. Papageorgiou, "Neural-network methods for solving boundary value problems with irregular boundaries," IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1041-1049, Sep. 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.5 , pp. 1041-1049
    • Lagaris, I.1    Likas, A.2    Papageorgiou, D.3
  • 9
    • 34547095501 scopus 로고    scopus 로고
    • Least squares solutions of the HJB equation with neural network value-function approximators
    • Jul
    • Y. Tassa and T. Erez, "Least squares solutions of the HJB equation with neural network value-function approximators," IEEE Trans. Neural Netw., vol. 18, no. 4, pp. 1031-1041, Jul. 2007.
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.4 , pp. 1031-1041
    • Tassa, Y.1    Erez, T.2
  • 10
    • 28244493592 scopus 로고    scopus 로고
    • Finite-element neural networks for solving differential equations
    • Nov
    • P. Ramuhalli, L. Upda, and S. S. Upda, "Finite-element neural networks for solving differential equations," IEEE Trans. Neural Netw., vol. 16, no. 6, pp. 1381-1392, Nov. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.16 , Issue.6 , pp. 1381-1392
    • Ramuhalli, P.1    Upda, L.2    Upda, S.S.3
  • 12
    • 40949089489 scopus 로고    scopus 로고
    • B. Garbow, K. Hillstrom, and J. More, Documentation for MINPACK subroutine LMDER, Argonne N. Lab., Mar. 1980, Tech. Rep..
    • B. Garbow, K. Hillstrom, and J. More, "Documentation for MINPACK subroutine LMDER," Argonne N. Lab., Mar. 1980, Tech. Rep..
  • 13
    • 0141794666 scopus 로고    scopus 로고
    • Acceleration of Levenberg-Marquardt training of neural networks with variable decay rate
    • Jul
    • T. Chen, D. Han, F. Au, and L. Tham, "Acceleration of Levenberg-Marquardt training of neural networks with variable decay rate," in Proc. Int. Joint Conf. Neural Netw., Jul. 2003, vol. 3, pp. 1873-1878.
    • (2003) Proc. Int. Joint Conf. Neural Netw , vol.3 , pp. 1873-1878
    • Chen, T.1    Han, D.2    Au, F.3    Tham, L.4
  • 14
    • 33750119752 scopus 로고    scopus 로고
    • On adaptive learning rate that guarantees convergence in feedforward networks
    • Sep
    • L. Behera, S. Kumar, and A. Patnaik, "On adaptive learning rate that guarantees convergence in feedforward networks," IEEE Trans. Neural Netw., vol. 17, no. 5, pp. 1116-1125, Sep. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.5 , pp. 1116-1125
    • Behera, L.1    Kumar, S.2    Patnaik, A.3
  • 19
    • 0004178386 scopus 로고    scopus 로고
    • 2nd ed. Upper Saddle River, NJ: Prentice-Hall
    • H. Khalil, Nonlinear Systems, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1996.
    • (1996) Nonlinear Systems
    • Khalil, H.1
  • 20
    • 0007148564 scopus 로고
    • On the estimation of errors propagated in the numerical integration of ordinary differential equations
    • P. Zadunaisky, "On the estimation of errors propagated in the numerical integration of ordinary differential equations," Numer. Math., vol. 27, pp. 21-39, 1976.
    • (1976) Numer. Math , vol.27 , pp. 21-39
    • Zadunaisky, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.