메뉴 건너뛰기




Volumn 26, Issue 2, 2010, Pages 267-275

Study of neural net training methods in parallel and distributed architectures

Author keywords

Neural nets; Parallel algorithms; Parallel architectures; Performance and scalability evaluation

Indexed keywords

ARTIFICIAL NEURAL NET; COLLIDER; DATA PREPROCESSING; DISTRIBUTED ARCHITECTURE; GRID ENVIRONMENTS; HIGH ENERGY; MULTI LAYER PERCEPTRON; NEURAL NET; NEURAL NETS; PARALLEL IMPLEMENTATIONS; PERFORMANCE AND SCALABILITY EVALUATION; SCALABILITY EVALUATION; SHARED MEMORY MULTIPROCESSOR; TRAINING ALGORITHMS; TRAINING METHODS; TRAINING PHASE;

EID: 70349777679     PISSN: 0167739X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.future.2009.01.001     Document Type: Article
Times cited : (23)

References (31)
  • 2
    • 33845890179 scopus 로고
    • Broken symmetries and the masses of gauge bosons
    • Higgs P. Broken symmetries and the masses of gauge bosons. Physical Review Letters 13 16 (1964) 508-509
    • (1964) Physical Review Letters , vol.13 , Issue.16 , pp. 508-509
    • Higgs, P.1
  • 4
    • 70349786167 scopus 로고    scopus 로고
    • Artificial Neural Networks in High Energy Physics, Consulted in 2007 http://neuralnets.web.cern.ch/NeuralNets/nnwInHep.html
    • Artificial Neural Networks in High Energy Physics, Consulted in 2007 http://neuralnets.web.cern.ch/NeuralNets/nnwInHep.html
  • 5
    • 15844401040 scopus 로고    scopus 로고
    • New globally convergent training scheme based on the resilient propagation algorithm
    • Aristoklis D., Anastasiadisa G.D., Magoulasa N., and Vrahatisb. New globally convergent training scheme based on the resilient propagation algorithm. Neurocomputing 64 (2005) 253-270
    • (2005) Neurocomputing , vol.64 , pp. 253-270
    • Aristoklis, D.1    Anastasiadisa, G.D.2    Magoulasa, N.3    Vrahatisb4
  • 7
    • 70349774739 scopus 로고    scopus 로고
    • The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration, Globus Project. 2002
    • C. Foster, J. Kesselman, S. Nick, Tuecke, The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration, Globus Project. 2002, Consulted 2008 http://www.globus.org/alliance/publications/papers/ogsa.pdf
    • (2008) Consulted
    • Foster, C.1    Kesselman, J.2    Nick, S.3    Tuecke4
  • 8
    • 33845747926 scopus 로고    scopus 로고
    • The crossgrid architecture: Applications, tools, and grid services
    • Springer, Berlin, Heidelberg
    • Bubak M., Malawski M., and Zaja̧c K. The crossgrid architecture: Applications, tools, and grid services. Lecture Notes in Computer Science 2970/2004 (2004), Springer, Berlin, Heidelberg 309-316
    • (2004) Lecture Notes in Computer Science , vol.2970-2004 , pp. 309-316
    • Bubak, M.1    Malawski, M.2    Zaja̧c, K.3
  • 11
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum E.B., and Haussler D. What size net gives valid generalization?. Neural Computation 1 1 (1989) 151-160
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 12
    • 85060036181 scopus 로고
    • Validity of the single processor approach to achieving large scale computing capabilities
    • Gene M. Amdahl, Validity of the single processor approach to achieving large scale computing capabilities, in: Proc. of the AFIPS Spring Joint Computer Conference, vol. 31, 1967, pp. 483-485
    • (1967) Proc. of the AFIPS Spring Joint Computer Conference , vol.31 , pp. 483-485
    • Amdahl, G.M.1
  • 13
    • 0003615167 scopus 로고    scopus 로고
    • Society for Industrial and Applied Mathematics, Philadelphia, PA
    • Blackford L.S., Choi J., et al. ScaLAPACK. Users' Guide (1997), Society for Industrial and Applied Mathematics, Philadelphia, PA
    • (1997) ScaLAPACK. Users' Guide
    • Blackford, L.S.1    Choi, J.2
  • 14
    • 0012493293 scopus 로고
    • A user's guide to the BLACS v1.1, Computer Science Dept
    • Technical Report CS-95-281, University of Tennessee, Knoxville, TN
    • J. Dongarra, R.C. Whaley, A user's guide to the BLACS v1.1, Computer Science Dept., Technical Report CS-95-281, University of Tennessee, Knoxville, TN, 1995
    • (1995)
    • Dongarra, J.1    Whaley, R.C.2
  • 15
  • 17
    • 0003706460 scopus 로고
    • Society for Industrial and Applied Mathematics, Philadelphia, PA
    • Anderson E., Bai Z., et al. LAPACK Users' Guide. second ed. (1995), Society for Industrial and Applied Mathematics, Philadelphia, PA
    • (1995) LAPACK Users' Guide. second ed.
    • Anderson, E.1    Bai, Z.2
  • 19
    • 0035311478 scopus 로고    scopus 로고
    • High-energy-physics event generation with PYTHIA 6.1
    • Sjöstrand T., Edén P., et al. High-energy-physics event generation with PYTHIA 6.1. Computer Physics Communications 13 2 (2001) 238-259
    • (2001) Computer Physics Communications , vol.13 , Issue.2 , pp. 238-259
    • Sjöstrand, T.1    Edén, P.2
  • 22
    • 70349783505 scopus 로고    scopus 로고
    • S. Blackford, Choice of block size, July 1996. Consulted in December 2008, http://www.netlib.org/utk/papers/sc96-scalapack/NODE22.HTM
    • S. Blackford, Choice of block size, July 1996. Consulted in December 2008, http://www.netlib.org/utk/papers/sc96-scalapack/NODE22.HTM
  • 26
    • 33750106681 scopus 로고    scopus 로고
    • J. Valdes, Graeme Bonham-Carter, Time dependent neural network models for detecting changes of state in earth and planetary processes, in: Proceedings of International Joint Conference on Neural Networks, Summer 2005, pp. 1710-1715
    • J. Valdes, Graeme Bonham-Carter, Time dependent neural network models for detecting changes of state in earth and planetary processes, in: Proceedings of International Joint Conference on Neural Networks, Summer 2005, pp. 1710-1715
  • 27
    • 34347258299 scopus 로고    scopus 로고
    • Grid computing in High Energy Physics using LCG: The BaBar experience
    • J.C. Werner, Grid computing in High Energy Physics using LCG: The BaBar experience, UK eScience All Hands Meeting, 2006
    • (2006) UK eScience All Hands Meeting
    • Werner, J.C.1
  • 28
    • 70349778970 scopus 로고    scopus 로고
    • C.-C. Peng, G.D. Magoulas, Effective modification of the bfgs method for training recurrent neural networks, in: Proceedings of the Conference in Numerical Analysis, September 2007, pp. 113-117
    • C.-C. Peng, G.D. Magoulas, Effective modification of the bfgs method for training recurrent neural networks, in: Proceedings of the Conference in Numerical Analysis, September 2007, pp. 113-117
  • 29
    • 38149085445 scopus 로고    scopus 로고
    • Adaptive self-scaling non-monotone bfgs training algorithm for recurrent neural networks
    • Artificial Neural Networks
    • Peng C., and Magoulas GD. Adaptive self-scaling non-monotone bfgs training algorithm for recurrent neural networks. Artificial Neural Networks. Lecture Notes in Computer Science 4668/2007 (2007) 259-268
    • (2007) Lecture Notes in Computer Science , vol.4668-2007 , pp. 259-268
    • Peng, C.1    Magoulas, GD.2
  • 30
    • 17744383055 scopus 로고    scopus 로고
    • S. Vijanth, McLoone Asirvadam, George W. Irwin, Memory efficient BFGS neural-network learning algorithms using MLP-NETwork: A survey, in: Proceedings of the IEEE International Conference on Control Applications, September 2004, pp. 586-591
    • S. Vijanth, McLoone Asirvadam, George W. Irwin, Memory efficient BFGS neural-network learning algorithms using MLP-NETwork: A survey, in: Proceedings of the IEEE International Conference on Control Applications, September 2004, pp. 586-591
  • 31
    • 70349768411 scopus 로고    scopus 로고
    • Production Resource Broker, Consulted in 2007 http://www.lip.pt/computing/projects/crossgrid/crossgrid-services/resource-broker.htm
    • Production Resource Broker, Consulted in 2007 http://www.lip.pt/computing/projects/crossgrid/crossgrid-services/resource-broker.htm


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.