메뉴 건너뛰기




Volumn 31, Issue 5, 1992, Pages 1338-1352

Long-Term Predictions of Chemical Processes Using Recurrent Neural Networks: A Parallel Training Approach

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMIC BEHAVIOUR; MODELLING-COMPUTER; NETWORK MODELS; NEURAL NETWORKS; PROCESS OPTIMIZATION;

EID: 0026868901     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie00005a014     Document Type: Article
Times cited : (174)

References (33)
  • 1
    • 0024931167 scopus 로고
    • A new approach for finding the global minimum of error function of neural networks
    • Baba, N. A new approach for finding the global minimum of error function of neural networks. Neural Networks 1989, 2 (5), 367-373.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 367-373
    • Baba, N.1
  • 2
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modeling and control of chemical process systems
    • Bhat, N.; McAvoy, T. J. Use of neural nets for dynamic modeling and control of chemical process systems. Comput. Chem. Eng. 1990, 14 (5), 573-583.
    • (1990) Comput. Chem. Eng. , vol.14 , Issue.5 , pp. 573-583
    • Bhat, N.1    McAvoy, T.J.2
  • 3
    • 0025448276 scopus 로고
    • Non-linear system identification using neural networks
    • Chen, S.; Billings, S. A.; Grant, P. M. Non-linear system identification using neural networks. Int. J. Control 1990, 51 (6), 1191-1214.
    • (1990) Int. J. Control , vol.51 , Issue.6 , pp. 1191-1214
    • Chen, S.1    Billings, S.A.2    Grant, P.M.3
  • 4
    • 0024861871 scopus 로고
    • Approximation by superpositions of sigmoidal function
    • Cybenko, G. Approximation by superpositions of sigmoidal function. Math. Controls, Signals Syst. 1988, 2, 303-314.
    • (1988) Math. Controls, Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 0022504321 scopus 로고
    • Computing with Neural Circuits: A Model
    • Hopfield, J. J.; Tank, W. Computing with Neural Circuits: A Model. Science 1986, 233, 625-633.
    • (1986) Science , vol.233 , pp. 625-633
    • Hopfield, J.J.1    Tank, W.2
  • 7
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 8
    • 0025403609 scopus 로고
    • Improvement of the backpropagation algorithm for training neural networks
    • Leonard, L.; Kramer, M. A. Improvement of the backpropagation algorithm for training neural networks. Comput. Chem. Eng. 1990, 14 (3), 337-341.
    • (1990) Comput. Chem. Eng. , vol.14 , Issue.3 , pp. 337-341
    • Leonard, L.1    Kramer, M.A.2
  • 9
    • 0022011031 scopus 로고
    • Input-output parametric models for nonlinear systems
    • Leontaritis, I. J.; Billings, S. A. Input-output parametric models for nonlinear systems. Int. J. Control 1985, 41, 303-344.
    • (1985) Int. J. Control , vol.41 , pp. 303-344
    • Leontaritis, I.J.1    Billings, S.A.2
  • 11
    • 85021610990 scopus 로고
    • A comparison of neural networks and partial least squares for deconvoluting fluorescence spectra
    • in press
    • McAvoy, T. J.; Su, H. T.; Wang, N. S.; Ming, H.; Horvath, J.; Sem-erjian, H. A comparison of neural networks and partial least squares for deconvoluting fluorescence spectra. Biotechnol. Bioeng. 1991, in press.
    • (1991) Biotechnol. Bioeng.
    • McAvoy, T.J.1    Su, H.T.2    Wang, N.S.3    Ming, H.4    Horvath, J.5    Sem-erjian, H.6
  • 13
    • 0025399567 scopus 로고
    • Identification and control of dynamic system using neural networks
    • Narendra, K. S.; Parthasarathy, K. Identification and control of dynamic system using neural networks. IEEE Trans. Neural Networks 1990, 1 (1), 4-27.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 14
    • 82055201757 scopus 로고
    • An iterative method for the identification of nonlinear systems using a Hammerstein model
    • Narendra, K. S.; Gallman, P. G. An iterative method for the identification of nonlinear systems using a Hammerstein model IEEE Trans. Autom. Control 1966, AC-U (6), 546-550.
    • (1966) IEEE Trans. Autom. Control , vol.AC-U , Issue.6 , pp. 546-550
    • Narendra, K.S.1    Gallman, P.G.2
  • 15
    • 0003464265 scopus 로고
    • Dynamic recurrent neural networks.
    • Technical Report CMU-CS-90-196, Carnegie Mellon University: Pittsburgh, PA
    • Pearlmutter, B. A. “Dynamic recurrent neural networks.”; Technical Report CMU-CS-90-196, Carnegie Mellon University: Pittsburgh, PA, 1990.
    • (1990)
    • Pearlmutter, B.A.1
  • 16
    • 0025095770 scopus 로고
    • Monitoring and control of biological removal of phosphorus and nitrogen by flow injection analyzers in a municipal pilot scale waste water treatment plant
    • Submitted for publication
    • Pedersen, K. M.; Kummel, M.; Soeberg, H. Monitoring and control of biological removal of phosphorus and nitrogen by flow injection analyzers in a municipal pilot scale waste water treatment plant. Submitted for publication in Anal. Chim. Acta 1990.
    • (1990) Anal. Chim. Acta
    • Pedersen, K.M.1    Kummel, M.2    Soeberg, H.3
  • 17
    • 0001184176 scopus 로고
    • Recurrent backpropagation and the dynamical approach to adaptive neural computation
    • Pineda, F. J. Recurrent backpropagation and the dynamical approach to adaptive neural computation. Neural Comput. 1989, 1, 167-172.
    • (1989) Neural Comput. , vol.1 , pp. 167-172
    • Pineda, F.J.1
  • 18
    • 0026626377 scopus 로고
    • Comparison of four neural net learning methods for dynamic system identification
    • Qin, S. Z.; Su, H. T.; McAvoy, T. J. Comparison of four neural net learning methods for dynamic system identification. IEEE Trans. Neural Networks 1992, 3 (1), 122-130.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.1 , pp. 122-130
    • Qin, S.Z.1    Su, H.T.2    McAvoy, T.J.3
  • 20
    • 0026367993 scopus 로고
    • Neural net based model predictive control
    • Saint-Donat, J.; Bhat, N.; McAvoy, T. J. Neural net based model predictive control. Int. J. Control 1991, 54 (6), 1453-1468.
    • (1991) Int. J. Control , vol.54 , Issue.6 , pp. 1453-1468
    • Saint-Donat, J.1    Bhat, N.2    McAvoy, T.J.3
  • 21
    • 0019525292 scopus 로고
    • Minimization by random search techniques
    • Solis, F. J.; Wets, J. B. Minimization by random search techniques. Math. Oper. Res. 1981, 6, 19-30.
    • (1981) Math. Oper. Res. , vol.6 , pp. 19-30
    • Solis, F.J.1    Wets, J.B.2
  • 22
    • 0022667868 scopus 로고
    • Design variables for bias distribution in transfer function estimation
    • Wahlberg, B.; Ljung, L. Design variables for bias distribution in transfer function estimation. IEEE Trans. Autom. Control 1986, AC-31 (2), 134-144.
    • (1986) IEEE Trans. Autom. Control , vol.AC-31 , Issue.2 , pp. 134-144
    • Wahlberg, B.1    Ljung, L.2
  • 23
    • 0025555891 scopus 로고
    • Temporal backpropagation for FIR neural networks
    • Wan, E. A. Temporal backpropagation for FIR neural networks. Int. Jt. Conf. Neural Networks 1990, 1, 575-580.
    • (1990) Int. Jt. Conf. Neural Networks , vol.1 , pp. 575-580
    • Wan, E.A.1
  • 25
    • 0002557583 scopus 로고
    • Advanced forecasting methods for global crisis warning and models of intelligence
    • Werbos, P. J. Advanced forecasting methods for global crisis warning and models of intelligence. Gen. Syst. 1977, 22, 25-38.
    • (1977) Gen. Syst. , vol.22 , pp. 25-38
    • Werbos, P.J.1
  • 26
    • 0000903748 scopus 로고
    • Generalization of back-propagation with application to a recurrent gas market model
    • Werbos, P. J. Generalization of back-propagation with application to a recurrent gas market model. Neural Networks 1988, 1, 339-356.
    • (1988) Neural Networks , vol.1 , pp. 339-356
    • Werbos, P.J.1
  • 27
    • 0024631961 scopus 로고
    • Maximizing long-term gas industry profits in two minutes in Lotus using neural network methods
    • Werbos, P. J. Maximizing long-term gas industry profits in two minutes in Lotus using neural network methods. IEEE Trans. Syst., Man, Cybernetics 1989, 19 (2), 315-333.
    • (1989) IEEE Trans. Syst., Man, Cybernetics , vol.19 , Issue.2 , pp. 315-333
    • Werbos, P.J.1
  • 30
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R. J.; Zipser, D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1989, 1, 270-280.
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 31
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • Williams, R. J.; Peng, J. An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural Comput. 1990, 2 (4), 490-501.
    • (1990) Neural Comput. , vol.2 , Issue.4 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 33
    • 0019438004 scopus 로고
    • Parameter estimation for continuous-time models: A survey
    • Young, P. Parameter estimation for continuous-time models: A survey. Automatica 1981, 17 (1), 23-39.
    • (1981) Automatica , vol.17 , Issue.1 , pp. 23-39
    • Young, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.