-
4
-
-
34250219651
-
-
10.1088/0953-8984/19/25/255208
-
A. M. Stoneham, J. Gavartin, A. L. Shluger, A. V. Kimmel, D. Muñoz Ramo, H. M. Rønnow, G. Aeppli, and C. Renner, J. Phys.: Condens. Matter 19, 255208 (2007). 10.1088/0953-8984/19/25/255208
-
(2007)
J. Phys.: Condens. Matter
, vol.19
, pp. 255208
-
-
Stoneham, A.M.1
Gavartin, J.2
Shluger, A.L.3
Kimmel, A.V.4
Muñoz Ramo, D.5
Rønnow, H.M.6
Aeppli, G.7
Renner, C.8
-
5
-
-
0035134711
-
-
10.1103/PhysRevB.63.054102;
-
G. Pacchioni, F. Frigoli, D. Ricci, and J. A. Weil, Phys. Rev. B 63, 054102 (2000) 10.1103/PhysRevB.63.054102
-
(2000)
Phys. Rev. B
, vol.63
, pp. 054102
-
-
Pacchioni, G.1
Frigoli, F.2
Ricci, D.3
Weil, J.A.4
-
9
-
-
33947670583
-
-
10.1103/PhysRevLett.98.137202
-
I. S. Elfimov, A. Rusydi, S. I. Csiszar, Z. Hu, H. H. Hsieh, H. J. Lin, C. T. Chen, R. Liang, and G. A. Sawatzky, Phys. Rev. Lett. 98, 137202 (2007). 10.1103/PhysRevLett.98.137202
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 137202
-
-
Elfimov, I.S.1
Rusydi, A.2
Csiszar, S.I.3
Hu, Z.4
Hsieh, H.H.5
Lin, H.J.6
Chen, C.T.7
Liang, R.8
Sawatzky, G.A.9
-
10
-
-
55349130682
-
-
10.1103/PhysRevB.78.134427
-
V. Pardo and W. E. Pickett, Phys. Rev. B 78, 134427 (2008). 10.1103/PhysRevB.78.134427
-
(2008)
Phys. Rev. B
, vol.78
, pp. 134427
-
-
Pardo, V.1
Pickett, W.E.2
-
13
-
-
49149091965
-
-
10.1103/PhysRevLett.101.055502
-
A. K. Singh, A. Janotti, M. Scheffler, and C. G. Van de Walle, Phys. Rev. Lett. 101, 055502 (2008). 10.1103/PhysRevLett.101.055502
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 055502
-
-
Singh, A.K.1
Janotti, A.2
Scheffler, M.3
Van De Walle, C.G.4
-
15
-
-
20844438567
-
-
10.1063/1.1880972
-
J. To, Alexey A. Sokol, Samuel A. French, Nikolas Kaltsoyannis, and C. Richard A. Catlow, J. Chem. Phys. 122, 144704 (2005). 10.1063/1.1880972
-
(2005)
J. Chem. Phys.
, vol.122
, pp. 144704
-
-
To, J.1
Sokol, A.A.2
French, S.A.3
Kaltsoyannis, N.4
Richard Catlow A, C.5
-
16
-
-
33845500519
-
-
10.1039/b607406e
-
A. A. Sokol, Samuel A. French, Stefan T. Bromley, C. Richard A. Catlow, Huub J. J. van Dam, and Paul Sherwood, Faraday Discuss. 134, 267 (2007). 10.1039/b607406e
-
(2007)
Faraday Discuss.
, vol.134
, pp. 267
-
-
Sokol, A.A.1
French, S.A.2
Bromley, S.T.3
Richard Catlow A, C.4
Dam Van, J.H.J.5
Sherwood, P.6
-
17
-
-
35248875310
-
-
10.1103/PhysRevA.76.040501
-
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, V. N. Staroverov, and J. Tao, Phys. Rev. A 76, 040501 (R) (2007). 10.1103/PhysRevA.76.040501
-
(2007)
Phys. Rev. A
, vol.76
, pp. 040501
-
-
Perdew, J.P.1
Ruzsinszky, A.2
Csonka, G.I.3
Vydrov, O.A.4
Scuseria, G.E.5
Staroverov, V.N.6
Tao, J.7
-
19
-
-
0001132752
-
-
10.1103/PhysRevLett.49.1691
-
J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982). 10.1103/PhysRevLett.49.1691
-
(1982)
Phys. Rev. Lett.
, vol.49
, pp. 1691
-
-
Perdew, J.P.1
Parr, R.G.2
Levy, M.3
Balduz, J.L.4
-
20
-
-
0000782234
-
-
10.1103/PhysRevB.16.2901
-
A. Zunger and A. J. Freeman, Phys. Rev. B 16, 2901 (1977). 10.1103/PhysRevB.16.2901
-
(1977)
Phys. Rev. B
, vol.16
, pp. 2901
-
-
Zunger, A.1
Freeman, A.J.2
-
21
-
-
50249212855
-
-
10.1016/S0031-8914(34)90011-2
-
T. C. Koopmans, Physica (Utrecht) 1, 104 (1934). 10.1016/S0031-8914(34) 90011-2
-
(1934)
Physica (Utrecht)
, vol.1
, pp. 104
-
-
Koopmans, T.C.1
-
23
-
-
34548736472
-
-
10.1103/PhysRevB.76.115109
-
F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, and G. Kresse, Phys. Rev. B 76, 115109 (2007). 10.1103/PhysRevB.76.115109
-
(2007)
Phys. Rev. B
, vol.76
, pp. 115109
-
-
Fuchs, F.1
Furthmüller, J.2
Bechstedt, F.3
Shishkin, M.4
Kresse, G.5
-
24
-
-
0001486791
-
-
10.1103/PhysRevB.57.1505
-
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998). 10.1103/PhysRevB.57.1505
-
(1998)
Phys. Rev. B
, vol.57
, pp. 1505
-
-
Dudarev, S.L.1
Botton, G.A.2
Savrasov, S.Y.3
Humphreys, C.J.4
Sutton, A.P.5
-
25
-
-
70349469005
-
-
Comparing different oxygen pseudopotentials with different projection radii we find in defect-free ZnO that n (Op) lies between 0.39 and 0.69. Therefore, GGA+U can create either a repulsive or an attractive VU [Eq. 4], depending on the choice of the pseudopotential.
-
Comparing different oxygen pseudopotentials with different projection radii we find in defect-free ZnO that n (Op) lies between 0.39 and 0.69. Therefore, GGA+U can create either a repulsive or an attractive VU [Eq. 4], depending on the choice of the pseudopotential.
-
-
-
-
27
-
-
0011236321
-
-
10.1103/PhysRevB.59.1758
-
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). 10.1103/PhysRevB.59.1758
-
(1999)
Phys. Rev. B
, vol.59
, pp. 1758
-
-
Kresse, G.1
Joubert, D.2
-
29
-
-
57749196971
-
-
10.1103/PhysRevB.78.235104
-
S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008). 10.1103/PhysRevB.78.235104
-
(2008)
Phys. Rev. B
, vol.78
, pp. 235104
-
-
Lany, S.1
Zunger, A.2
-
30
-
-
0001671054
-
-
10.1103/PhysRevB.51.4014
-
G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995). 10.1103/PhysRevB.51.4014
-
(1995)
Phys. Rev. B
, vol.51
, pp. 4014
-
-
Makov, G.1
Payne, M.C.2
-
31
-
-
70349438411
-
-
For the empirical band-gap correction, we use the following atomic NLEP and GGA+U parameters (see Refs. therein; numbers in eV): VO,p =-1.0, VZn,s =+6.5, VZn,p =-0.6, VIn,s =+7.0, VIn,p =-1.1, VSn,s =+3.7, VSn,p =-0.6 (U-J) Zn,d =6, (U-J) Cu,d =5, and (U-J) Ag,d =4.
-
For the empirical band-gap correction, we use the following atomic NLEP and GGA+U parameters (see Refs. therein; numbers in eV): VO,p =-1.0, VZn,s =+6.5, VZn,p =-0.6, VIn,s =+7.0, VIn,p =-1.1, VSn,s =+3.7, VSn,p =-0.6 (U-J) Zn,d =6, (U-J) Cu,d =5, and (U-J) Ag,d =4.
-
-
-
-
32
-
-
2342610743
-
-
10.1002/pssb.200301962
-
B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Status Solidi B 241, 231 (2004). 10.1002/pssb.200301962
-
(2004)
Phys. Status Solidi B
, vol.241
, pp. 231
-
-
Meyer, B.K.1
Alves, H.2
Hofmann, D.M.3
Kriegseis, W.4
Forster, D.5
Bertram, F.6
Christen, J.7
Hoffmann, A.8
Straßburg, M.9
Dworzak, M.10
Haboeck, U.11
Rodina, A.V.12
-
33
-
-
70349465912
-
-
DFT+U implicitly assumes that the partial charge nm,σ differs by unity between occupied and unoccupied m sublevels. However, due to hybridization with the ligands, nm,σ >0 generally holds even for nominally unoccupied crystal-field symmetries. Consequently, DFT+U for transition-metal d states in compounds tends to underestimate the energy splitting when U has been chosen to correctly place the occupied d states.
-
DFT+U implicitly assumes that the partial charge nm,σ differs by unity between occupied and unoccupied m sublevels. However, due to hybridization with the ligands, nm,σ >0 generally holds even for nominally unoccupied crystal-field symmetries. Consequently, DFT+U for transition-metal d states in compounds tends to underestimate the energy splitting when U has been chosen to correctly place the occupied d states.
-
-
-
-
36
-
-
58849083809
-
-
10.1103/PhysRevLett.102.017201
-
H. Peng, H. J. Xiang, S. H. Wei, S. S. Li, J. B. Xia, and J. Li, Phys. Rev. Lett. 102, 017201 (2009). 10.1103/PhysRevLett.102.017201
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 017201
-
-
Peng, H.1
Xiang, H.J.2
Wei, S.H.3
Li, S.S.4
Xia, J.B.5
Li, J.6
|