메뉴 건너뛰기




Volumn 360, Issue 2, 2009, Pages 530-536

Uniqueness of positive solutions for a boundary blow-up problem

Author keywords

Asymptotic behavior; Boundary blow up; Uniqueness

Indexed keywords


EID: 70349397233     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2009.06.077     Document Type: Article
Times cited : (41)

References (26)
  • 1
    • 51249162198 scopus 로고
    • 'Large' solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour
    • Bandle C., and Marcus M. 'Large' solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour. J. Anal. Math. 58 (1992) 9-24
    • (1992) J. Anal. Math. , vol.58 , pp. 9-24
    • Bandle, C.1    Marcus, M.2
  • 2
    • 0000447808 scopus 로고
    • u und die automorphen Funktionen
    • u und die automorphen Funktionen. Math. Ann. 77 (1916) 173-212
    • (1916) Math. Ann. , vol.77 , pp. 173-212
    • Bieberbach, L.1
  • 3
    • 24944583583 scopus 로고    scopus 로고
    • Uniqueness and boundary behaviour of large solutions to elliptic problems with singular weights
    • Chuaqui M., Cortázar C., Elgueta M., and García-Melián J. Uniqueness and boundary behaviour of large solutions to elliptic problems with singular weights. Comm. Pure Appl. Anal. 3 (2004) 653-662
    • (2004) Comm. Pure Appl. Anal. , vol.3 , pp. 653-662
    • Chuaqui, M.1    Cortázar, C.2    Elgueta, M.3    García-Melián, J.4
  • 4
    • 29144494928 scopus 로고    scopus 로고
    • General uniqueness results and variation speed for blow-up solutions of elliptic equations
    • Cîrstea F., and Du Y. General uniqueness results and variation speed for blow-up solutions of elliptic equations. Proc. London Math. Soc. 91 (2005) 459-482
    • (2005) Proc. London Math. Soc. , vol.91 , pp. 459-482
    • Cîrstea, F.1    Du, Y.2
  • 5
    • 0038729434 scopus 로고    scopus 로고
    • Asymptotics for the blow-up boundary solution of the logistic equation with absorption
    • Cîrstea F.C., and Rǎdulescu V. Asymptotics for the blow-up boundary solution of the logistic equation with absorption. C. R. Math. Acad. Sci. Paris 336 3 (2003) 231-236
    • (2003) C. R. Math. Acad. Sci. Paris , vol.336 , Issue.3 , pp. 231-236
    • Cîrstea, F.C.1    Rǎdulescu, V.2
  • 6
    • 0037849841 scopus 로고    scopus 로고
    • Uniqueness of the blow-up boundary solution of logistic equations with absorbtion
    • Cîrstea F., and Rǎdulescu V. Uniqueness of the blow-up boundary solution of logistic equations with absorbtion. C. R. Math. Acad. Sci. Paris Sér. I 335 5 (2002) 447-452
    • (2002) C. R. Math. Acad. Sci. Paris Sér. I , vol.335 , Issue.5 , pp. 447-452
    • Cîrstea, F.1    Rǎdulescu, V.2
  • 7
    • 33644614850 scopus 로고    scopus 로고
    • Nonlinear problems with singular boundary conditions arising in population dynamics: A Karamata regular variation theory approach
    • Cîrstea F., and Rǎdulescu V. Nonlinear problems with singular boundary conditions arising in population dynamics: A Karamata regular variation theory approach. Asymptot. Anal. 46 (2006) 275-298
    • (2006) Asymptot. Anal. , vol.46 , pp. 275-298
    • Cîrstea, F.1    Rǎdulescu, V.2
  • 8
    • 38949214702 scopus 로고    scopus 로고
    • On uniqueness of boundary blow-up solutions of a class of nonlinear elliptic equations
    • Dong H., Kim S., and Safonov M. On uniqueness of boundary blow-up solutions of a class of nonlinear elliptic equations. Comm. Partial Differential Equations 33 1-3 (2008) 177-188
    • (2008) Comm. Partial Differential Equations , vol.33 , Issue.1-3 , pp. 177-188
    • Dong, H.1    Kim, S.2    Safonov, M.3
  • 9
    • 0033233493 scopus 로고    scopus 로고
    • Blow-up solutions for a class of semilinear elliptic and parabolic equations
    • Du Y., and Huang Q. Blow-up solutions for a class of semilinear elliptic and parabolic equations. SIAM J. Math. Anal. 31 (1999) 1-18
    • (1999) SIAM J. Math. Anal. , vol.31 , pp. 1-18
    • Du, Y.1    Huang, Q.2
  • 10
    • 34247178568 scopus 로고    scopus 로고
    • Back to the Keller-Osserman condition for boundary blow-up solutions
    • Dumont S., Dupaigne L., Goubet O., and Rǎdulescu V. Back to the Keller-Osserman condition for boundary blow-up solutions. Adv. Nonlinear Stud. 7 2 (2007) 271-298
    • (2007) Adv. Nonlinear Stud. , vol.7 , Issue.2 , pp. 271-298
    • Dumont, S.1    Dupaigne, L.2    Goubet, O.3    Rǎdulescu, V.4
  • 11
    • 33644762859 scopus 로고    scopus 로고
    • Nondegeneracy and uniqueness for boundary blow-up elliptic problems
    • García-Melián J. Nondegeneracy and uniqueness for boundary blow-up elliptic problems. J. Differential Equations 223 1 (2006) 208-227
    • (2006) J. Differential Equations , vol.223 , Issue.1 , pp. 208-227
    • García-Melián, J.1
  • 12
    • 34147138394 scopus 로고    scopus 로고
    • Boundary behavior for large solutions to elliptic equations with singular weights
    • García-Melián J. Boundary behavior for large solutions to elliptic equations with singular weights. Nonlinear Anal. 67 3 (2007) 818-826
    • (2007) Nonlinear Anal. , vol.67 , Issue.3 , pp. 818-826
    • García-Melián, J.1
  • 13
    • 54149105274 scopus 로고    scopus 로고
    • Uniqueness for boundary blow-up problems with continuous weights
    • García-Melián J. Uniqueness for boundary blow-up problems with continuous weights. Proc. Amer. Math. Soc. 135 9 (2007) 2785-2793
    • (2007) Proc. Amer. Math. Soc. , vol.135 , Issue.9 , pp. 2785-2793
    • García-Melián, J.1
  • 14
    • 23044531526 scopus 로고    scopus 로고
    • Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up
    • García-Melián J., Letelier-Albornoz R., and Sabina de Lis J. Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up. Proc. Amer. Math. Soc. 129 12 (2001) 3593-3602
    • (2001) Proc. Amer. Math. Soc. , vol.129 , Issue.12 , pp. 3593-3602
    • García-Melián, J.1    Letelier-Albornoz, R.2    Sabina de Lis, J.3
  • 16
    • 84980083679 scopus 로고
    • On solutions of Δ u = f (u)
    • Keller J.B. On solutions of Δ u = f (u). Comm. Pure Appl. Math. 10 (1957) 503-510
    • (1957) Comm. Pure Appl. Math. , vol.10 , pp. 503-510
    • Keller, J.B.1
  • 17
    • 3042690065 scopus 로고    scopus 로고
    • IMA preprint No. 1872
    • p, IMA preprint No. 1872, 2002
    • (2002) p
    • Kim, S.1
  • 18
    • 17544399189 scopus 로고    scopus 로고
    • The boundary blow-up rate of large solutions
    • López-Gómez J. The boundary blow-up rate of large solutions. J. Differential Equations 195 (2003) 25-45
    • (2003) J. Differential Equations , vol.195 , pp. 25-45
    • López-Gómez, J.1
  • 19
    • 33646075714 scopus 로고    scopus 로고
    • Optimal uniqueness theorems and exact blow-up rates of large solutions
    • López-Gómez J. Optimal uniqueness theorems and exact blow-up rates of large solutions. J. Differential Equations 224 (2006) 385-439
    • (2006) J. Differential Equations , vol.224 , pp. 385-439
    • López-Gómez, J.1
  • 20
    • 1642291212 scopus 로고    scopus 로고
    • Existence and uniqueness results for large solutions of general nonlinear elliptic equations
    • Marcus M., and Véron L. Existence and uniqueness results for large solutions of general nonlinear elliptic equations. J. Evol. Equ. 3 4 (2003) 637-652
    • (2003) J. Evol. Equ. , vol.3 , Issue.4 , pp. 637-652
    • Marcus, M.1    Véron, L.2
  • 21
    • 33750347222 scopus 로고    scopus 로고
    • Boundary asymptotic and uniqueness of solutions to the p-Laplacian with infinite boundary values
    • Mohammed A. Boundary asymptotic and uniqueness of solutions to the p-Laplacian with infinite boundary values. J. Math. Anal. Appl. 325 1 (2007) 480-489
    • (2007) J. Math. Anal. Appl. , vol.325 , Issue.1 , pp. 480-489
    • Mohammed, A.1
  • 22
    • 84972521660 scopus 로고
    • On the inequality Δ u ≥ f (u)
    • Osserman R. On the inequality Δ u ≥ f (u). Pacific J. Math. 7 (1957) 1641-1647
    • (1957) Pacific J. Math. , vol.7 , pp. 1641-1647
    • Osserman, R.1
  • 23
  • 24
    • 67649958959 scopus 로고    scopus 로고
    • Singular phenomena in nonlinear elliptic problems: From boundary blow-up solutions to equations with singular nonlinearities
    • Chipot M. (Ed)
    • Rǎdulescu V. Singular phenomena in nonlinear elliptic problems: From boundary blow-up solutions to equations with singular nonlinearities. In: Chipot M. (Ed). Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4 (2007) 483-591
    • (2007) Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 4 , pp. 483-591
    • Rǎdulescu, V.1
  • 25
    • 20744459155 scopus 로고    scopus 로고
    • The asymptotic behaviour of solutions with blow-up at the boundary for semilinear elliptic problems
    • Zhang Z. The asymptotic behaviour of solutions with blow-up at the boundary for semilinear elliptic problems. J. Math. Anal. Appl. 308 2 (2005) 532-540
    • (2005) J. Math. Anal. Appl. , vol.308 , Issue.2 , pp. 532-540
    • Zhang, Z.1
  • 26
    • 45349096248 scopus 로고    scopus 로고
    • Boundary behavior of solutions to some singular elliptic boundary value problems
    • Zhang Z. Boundary behavior of solutions to some singular elliptic boundary value problems. Nonlinear Anal. 69 7 (2008) 2293-2302
    • (2008) Nonlinear Anal. , vol.69 , Issue.7 , pp. 2293-2302
    • Zhang, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.