-
1
-
-
0007095328
-
Existence of two boundary blow-up solutions for semilinear elliptic equations
-
A. Aftalion and W. Reichel, Existence of two boundary blow-up solutions for semilinear elliptic equations, J. Diff Eq. 141 (1997), 400-421.
-
(1997)
J. Diff Eq
, vol.141
, pp. 400-421
-
-
Aftalion, A.1
Reichel, W.2
-
2
-
-
51249162198
-
Large solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behavior
-
C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Math. Anal. 58 (1992), 9-24.
-
(1992)
J. Math. Anal
, vol.58
, pp. 9-24
-
-
Bandle, C.1
Marcus, M.2
-
3
-
-
85012300552
-
Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blow-up on the boundary
-
C. Bandle and M. Marcus, Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blow-up on the boundary, Ann. Inst. Henri Poincaré 12 (1995), 155-171.
-
(1995)
Ann. Inst. Henri Poincaré
, vol.12
, pp. 155-171
-
-
Bandle, C.1
Marcus, M.2
-
5
-
-
34247207418
-
-
Ph. Clément and G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Ann. della Scola Norm. Sup. di Pisa, (4), 14, n 1, (1987), 97-121.
-
Ph. Clément and G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Ann. della Scola Norm. Sup. di Pisa, (4), 14, n 1, (1987), 97-121.
-
-
-
-
6
-
-
34247214882
-
Getting a solution between sub and supersolutions without monotone iteration
-
Ph. Clément and G. Sweers, Getting a solution between sub and supersolutions without monotone iteration, Rend. Istit. Mat. Univ. Trieste 19, n. 2, (1987), 189-194.
-
(1987)
Rend. Istit. Mat. Univ. Trieste
, vol.19
, Issue.2
, pp. 189-194
-
-
Clément, P.1
Sweers, G.2
-
7
-
-
0037777206
-
Liouville type results and eventual flatness of positive solutions for p-laplacian equations , Adv
-
Y. Du and Z. Guo, Liouville type results and eventual flatness of positive solutions for p-laplacian equations , Adv. in Diff. Eq. 7, n 12, (2002), 1479-1512.
-
(2002)
Diff. Eq
, vol.7
, Issue.12
, pp. 1479-1512
-
-
Du, Y.1
Guo, Z.2
-
8
-
-
2442670489
-
Uniqueness and layer analysis for boundary blow-up solutions
-
Y. Du and Z. Guo, Uniqueness and layer analysis for boundary blow-up solutions, J. Maths. Pures et Appl. 83 (2004), 739-763.
-
(2004)
J. Maths. Pures et Appl
, vol.83
, pp. 739-763
-
-
Du, Y.1
Guo, Z.2
-
9
-
-
34250271532
-
Symmetry and related properties via the maximum principle
-
B. Gidas, W-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phy. 68 (1979), 209-243.
-
(1979)
Comm. Math. Phy
, vol.68
, pp. 209-243
-
-
Gidas, B.1
Ni, W.-M.2
Nirenberg, L.3
-
10
-
-
84980083679
-
On solutions to Δu = f(u)
-
J. Keller, On solutions to Δu = f(u), Comm. Pure and Applied Math. 10 (1957), 503-510.
-
(1957)
Comm. Pure and Applied Math
, vol.10
, pp. 503-510
-
-
Keller, J.1
-
11
-
-
85038507178
-
-
Elliptic and parabolic problems, Prog, nonlinear diff. equations appl, Birkhauser, Basel
-
S. Kishenassamy, Recent progress in boundary blow up, Elliptic and parabolic problems, Prog, in nonlinear diff. equations appl. 63, Birkhauser, Basel, (2005), 329-341.
-
(2005)
Recent progress in boundary blow up
, vol.63
, pp. 329-341
-
-
Kishenassamy, S.1
-
12
-
-
84972535485
-
-
A. Lazer and P. McKenna, Asymptotic behaviour of solutions to boundary blow-up problems, Diff. and Int. Equations 7, n 4, (1994), 1001-1019.
-
A. Lazer and P. McKenna, Asymptotic behaviour of solutions to boundary blow-up problems, Diff. and Int. Equations 7, n 4, (1994), 1001-1019.
-
-
-
-
13
-
-
1642291212
-
Existence and uniqueness results for large solutions of general nonlinear elliptic equations
-
M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations, J. Evolution Equ. 3 (2003), 637-652.
-
(2003)
J. Evolution Equ
, vol.3
, pp. 637-652
-
-
Marcus, M.1
Véron, L.2
-
14
-
-
84972521660
-
On the inequality Δu ≥ f(u)
-
R. Osserman, On the inequality Δu ≥ f(u), Pacific J. Math. 7 (1957), 1641-1647.
-
(1957)
Pacific J. Math
, vol.7
, pp. 1641-1647
-
-
Osserman, R.1
|