메뉴 건너뛰기




Volumn 20, Issue 5, 2009, Pages

Hybrid extended particle filter (HEPF) for integrated inertial navigation and global positioning systems

Author keywords

INS GPS integration; Low cost MEMS sensors; Particle filter

Indexed keywords

DOUBLE-INTEGRATION; GAUSSIAN NOISE DISTRIBUTIONS; HIGHLY NONLINEAR; INERTIAL NAVIGATIONS; INS/GPS INTEGRATION; INTEGRATED NAVIGATION SYSTEMS; LAND VEHICLE NAVIGATION; LOW-COST MEMS SENSORS; MEASUREMENT MODEL; MICROELECTROMECHANICAL SYSTEM SENSORS; MOVING OBJECTS; NAVIGATION DATA; NON-GAUSSIAN NOISE; NON-LINEARITY; PARTICLE FILTER; TIME VARYING; VEHICLE DYNAMICS;

EID: 70349326003     PISSN: 09570233     EISSN: 13616501     Source Type: Journal    
DOI: 10.1088/0957-0233/20/5/055203     Document Type: Article
Times cited : (31)

References (18)
  • 6
    • 70349368598 scopus 로고    scopus 로고
    • Shin E H 2005 Estimation techniques for low-cost inertial navigation PhD Thesis University of Calgary, Canada UCGE Report 20219
    • (2005) PhD Thesis
    • Shin, E.H.1
  • 8
    • 0001460136 scopus 로고    scopus 로고
    • On sequential simulation-based methods for Bayesian filtering
    • Doucet A, Godsill S J and Andrieu C 2000 On sequential simulation-based methods for Bayesian filtering Stat. Comput. 10 197-208
    • (2000) Stat. Comput. , vol.10 , Issue.3 , pp. 197-208
    • Doucet, A.1    Godsill, S.J.2    Andrieu, C.3
  • 10
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • Gordon N, Salmond D J and Smith A F M 1993 Novel approach to nonlinear/non-Gaussian Bayesian state estimation Proc. Radar and Signal Processing, IEE Proc. F vol 140 pp 107-13
    • (1993) IEE Proc. , vol.140 , pp. 107-113
    • Gordon, N.1    Salmond, D.J.2    Smith, A.F.M.3
  • 11
    • 70349354428 scopus 로고    scopus 로고
    • Bergman N 1999 Recursive Bayesian estimation: navigation and tracking applications Dissertation No. 579, Linköping University, Sweden
    • (1999) Dissertation
    • Bergman, N.1
  • 12
    • 0036475447 scopus 로고    scopus 로고
    • A tutorial of particle filters for online nonlinear/non-Gaussian Bayesian tracking
    • Arulampalan S, Maksell S, Gordon N and Clapp T 2002 A tutorial of particle filters for online nonlinear/non-Gaussian Bayesian tracking IEEE Trans. Signal Process. 50 174-88
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.2 , pp. 174-188
    • Arulampalan, S.1    Maksell, S.2    Gordon, N.3    Clapp, T.4
  • 14
    • 70349356073 scopus 로고    scopus 로고
    • Nordlund P J 2002 Sequential Monte Carlo filters and integrated navigation Thesis no. 945, Linköping University, Linköping, Sweden
    • (2002) Thesis
    • Nordlund, P.J.1
  • 15
    • 34547616407 scopus 로고    scopus 로고
    • An introduction to Monte Carlo methods for Bayesian data analysis
    • Andrieu C, Doucet A and Fitzgerald W J 2001 An introduction to Monte Carlo methods for Bayesian data analysis Nonlinear Dynamics and Statistics ed A I Mees (Boston, MA: Birkhäuser) pp 169-217
    • (2001) Nonlinear Dynamics and Statistics , pp. 169-217
    • Andrieu, C.1    Doucet, A.2    Fitzgerald, W.J.3
  • 16
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • Pitt M K and Shephard N 1999 Filtering via simulation: auxiliary particle filters J. Am. Stat. Assoc. 94 590-9
    • (1999) J. Am. Stat. Assoc. , vol.94 , Issue.446 , pp. 590-599
    • Pitt, M.K.1    Shephard, N.2
  • 17
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamics systems
    • Liu J and Chen R 1998 Sequential Monte Carlo methods for dynamics systems J. Am. Stat. Assoc. 93 1031-41
    • (1998) J. Am. Stat. Assoc. , vol.93 , Issue.443 , pp. 1032-1041
    • Liu, J.1    Chen, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.