메뉴 건너뛰기




Volumn 5519 LNCS, Issue , 2009, Pages 222-231

Random ordinality ensembles: A novel ensemble method for multi-valued categorical data

Author keywords

Binary splits; Data fragmentation; Decision trees; Multi way splits; Random Ordinality

Indexed keywords

BINARY SPLITS; BRANCHING FACTORS; CATEGORICAL ATTRIBUTES; CATEGORICAL DATA; CONTINUOUS SPACES; DATA FRAGMENTATION; DATA SETS; EMPIRICAL EVALUATIONS; ENSEMBLE METHODS; INFORMATION GAIN; MULTI-WAY SPLITS; RANDOM FORESTS; RANDOM ORDINALITY; RANDOM PROJECTIONS; SIMPLE METHOD; THEORETICAL STUDY;

EID: 70349306580     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-02326-2_23     Document Type: Conference Paper
Times cited : (3)

References (15)
  • 1
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 × 2 cv f Test Comparing Supervised Classification Learning Algorithms
    • Alpaydin, E.: Combined 5 × 2 cv f Test Comparing Supervised Classification Learning Algorithms. Neural Computation 11(8), 1885-1892 (1999)
    • (1999) Neural Computation , vol.11 , Issue.8 , pp. 1885-1892
    • Alpaydin, E.1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123-140 (1996)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L.: Random Forests. Machine Learning 45(1), 5-32 (2001)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0000259511 scopus 로고    scopus 로고
    • Appro×imate Statistical Tests for Comparing Supervised Classification Learning Algorithms
    • Dietterich, T.G.: Appro×imate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation 10, 1895-1923 (1998)
    • (1998) Neural Computation , vol.10 , pp. 1895-1923
    • Dietterich, T.G.1
  • 7
    • 80053403826 scopus 로고    scopus 로고
    • Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, 1857, pp. 1-15. Springer, Heidelberg (2000)
    • Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1-15. Springer, Heidelberg (2000)
  • 8
    • 0034250160 scopus 로고    scopus 로고
    • An E×perimental Comparison of Three Methods for Constructing Ensembles of Decision trees: Bagging, Boosting, and randomization
    • Dietterich, T.G.: An E×perimental Comparison of Three Methods for Constructing Ensembles of Decision trees: Bagging, Boosting, and randomization. Machine Learning 40(2), 1-22 (2000)
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 1-22
    • Dietterich, T.G.1
  • 9
    • 0001371299 scopus 로고
    • The Attribute Selection Problem in Decision Tree Generation
    • MIT Press, Cambridge
    • Fayyad, U.M., Irani, K.B.: The Attribute Selection Problem in Decision Tree Generation. In: Proc. AAAI 1992. MIT Press, Cambridge (1992)
    • (1992) Proc. AAAI
    • Fayyad, U.M.1    Irani, K.B.2
  • 10
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences 55(1), 119-139 (1997)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 13
    • 70349331907 scopus 로고    scopus 로고
    • Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)
    • Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.