메뉴 건너뛰기




Volumn 24, Issue 1, 2010, Pages 182-192

A Bayesian machine learning method for sensor selection and fusion with application to on-board fault diagnostics

Author keywords

Condition monitoring; Diesel engine fault detection; Empirical Bayes; Feature group selection; Hierarchical Bayes; Sensor selection

Indexed keywords

BAYESIAN; BAYESIAN FRAMEWORKS; COMPLEX PROBLEMS; DATA RECORDS; EMPIRICAL BAYES; FAULT DIAGNOSTICS; FEATURE LEVEL; FEATURE SELECTION; FEATURE-GROUP SELECTION; GENERALIZED LINEAR MODEL; HIERARCHICAL BAYES; HIERARCHICAL BAYESIAN; MACHINE LEARNING METHODS; MAINTENANCE COST; MISCLASSIFICATION RATES; MODEL SELECTION; ONLINE DATABASE; OPTIMAL NUMBER; OPTIMAL SETS; OVERFITTING; RANK ORDER; SENSOR SELECTION; STATISTICAL MODELS; SYNTHETIC REGRESSION;

EID: 70349296776     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2009.06.010     Document Type: Article
Times cited : (30)

References (27)
  • 2
    • 34547110218 scopus 로고    scopus 로고
    • An overview of intelligent fault detection in systems and structures
    • Worden K., and Dulieu-Barton J.M. An overview of intelligent fault detection in systems and structures. Structural Health Monitoring 3 1 (2004) 85-98
    • (2004) Structural Health Monitoring , vol.3 , Issue.1 , pp. 85-98
    • Worden, K.1    Dulieu-Barton, J.M.2
  • 3
    • 3543081082 scopus 로고    scopus 로고
    • Intelligent condition monitoring using fuzzy inductive learning
    • Peng Y. Intelligent condition monitoring using fuzzy inductive learning. Journal of Intelligent Manufacturing 15 3 (2004) 373-380
    • (2004) Journal of Intelligent Manufacturing , vol.15 , Issue.3 , pp. 373-380
    • Peng, Y.1
  • 5
    • 0033689605 scopus 로고    scopus 로고
    • Genetic algorithms for feature selection in machine condition monitoring with vibration signals
    • Jack L.B., and Nandi A.K. Genetic algorithms for feature selection in machine condition monitoring with vibration signals. IEE Proceedings: Vision, Image and Signal Processing 147 3 (2000) 205-212
    • (2000) IEE Proceedings: Vision, Image and Signal Processing , vol.147 , Issue.3 , pp. 205-212
    • Jack, L.B.1    Nandi, A.K.2
  • 13
    • 33746126624 scopus 로고    scopus 로고
    • Blockwise sparse regression
    • Kim Y., Kim J., and Kim Y. Blockwise sparse regression. Statistica Sinica 16 (2006) 375-390
    • (2006) Statistica Sinica , vol.16 , pp. 375-390
    • Kim, Y.1    Kim, J.2    Kim, Y.3
  • 14
    • 34548232392 scopus 로고    scopus 로고
    • Input selection and shrinkage in multiresponse linear regression
    • Similä T., and Tikka J. Input selection and shrinkage in multiresponse linear regression. Computational Statistics and Data Analysis 52 (2007) 406-422
    • (2007) Computational Statistics and Data Analysis , vol.52 , pp. 406-422
    • Similä, T.1    Tikka, J.2
  • 15
    • 34547840186 scopus 로고    scopus 로고
    • Group SCAD regression analysis for microarray time course gene expression data
    • Wang L., Chen G., and Li H. Group SCAD regression analysis for microarray time course gene expression data. Bioinformatics 23 12 (2007) 1486-1494
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1486-1494
    • Wang, L.1    Chen, G.2    Li, H.3
  • 16
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M., and Lin Y.B. Model selection and estimation in regression with grouped variables. Journal of Royal Statistical Society 68 (2006) 49-67
    • (2006) Journal of Royal Statistical Society , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.B.2
  • 17
    • 34447335946 scopus 로고    scopus 로고
    • Grouped and hierarchical model selection through composite absolute penalties
    • Technical Report, University of California
    • P. Zhao, G. Rocha, B. Yu, Grouped and hierarchical model selection through composite absolute penalties, Technical Report, University of California, 2006.
    • (2006)
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 19
    • 33947425580 scopus 로고    scopus 로고
    • Supervised group lasso with applications to microarray data analysis
    • Ma S., Song X., and Huang J. Supervised group lasso with applications to microarray data analysis. Bioinformatics 8 60 (2007)
    • (2007) Bioinformatics , vol.8 , Issue.60
    • Ma, S.1    Song, X.2    Huang, J.3
  • 20
    • 51949116173 scopus 로고    scopus 로고
    • The group lasso for logistic regression
    • Technical Report, Eidgenössische Technische Hochschule, 2006
    • L. Meier, S. van de Geer, P. Buhlmann, The group lasso for logistic regression, Technical Report, Eidgenössische Technische Hochschule, 2006.
    • Meier, L.1    van de Geer, S.2    Buhlmann, P.3
  • 21
    • 33947376436 scopus 로고    scopus 로고
    • SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information
    • Stoeckel J., and Fung G. SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial information. Knowledge and Information Systems 11 2 (2007) 243-258
    • (2007) Knowledge and Information Systems , vol.11 , Issue.2 , pp. 243-258
    • Stoeckel, J.1    Fung, G.2
  • 22
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1 3 (2001) 211-244
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 23
    • 0007725224 scopus 로고    scopus 로고
    • Variational relevance vector machines
    • Boutilier C., and Goldzmidt M. (Eds), Morgan Kaufmann, Los Altos, CA
    • Bishop C.M., and Tipping M.E. Variational relevance vector machines. In: Boutilier C., and Goldzmidt M. (Eds). Uncertainty in Artificial Intelligence (2000), Morgan Kaufmann, Los Altos, CA 46-53
    • (2000) Uncertainty in Artificial Intelligence , pp. 46-53
    • Bishop, C.M.1    Tipping, M.E.2
  • 24
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • McKay D.J.C. Bayesian interpolation. Neural Computation 4 3 (1992) 415-447
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • McKay, D.J.C.1
  • 26
    • 70349283358 scopus 로고    scopus 로고
    • Information-theoretic sensor subset selection: Application to signal-based fault isolation in diesel engines
    • Chicago, IL, USA
    • A.A. Joshi, P.H. Meckl, G.B. King, et al., Information-theoretic sensor subset selection: application to signal-based fault isolation in diesel engines, in: Proceedings of the IMECE2006, Chicago, IL, USA, 2006, pp. 277-286.
    • (2006) Proceedings of the IMECE2006 , pp. 277-286
    • Joshi, A.A.1    Meckl, P.H.2    King, G.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.