메뉴 건너뛰기




Volumn 14, Issue 2, 2010, Pages 181-192

Image category learning and classification via optimal linear combination of multiple partially matching kernels

Author keywords

Kernel based learning; Machine learning; Object recognition; Pyramid match kernel

Indexed keywords

CLASSIFICATION ,; CLASSIFIER PERFORMANCE; DATA SETS; DECISION FUNCTIONS; DEGREE OF SIMILARITY; ENCODINGS; FEATURE SETS; HOMOGENEOUS MODELS; IMAGE CATEGORIZATION; INTERPRETABILITY; KERNEL BASED LEARNING; KERNEL WEIGHT; LINEAR COMBINATIONS; MACHINE LEARNING; MODIFIED PROJECTION; MULTI-LEVEL; MULTIPLE KERNEL LEARNING; OBJECT DETECTION; PYRAMID MATCH KERNEL;

EID: 70349275214     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-009-0436-y     Document Type: Article
Times cited : (3)

References (32)
  • 1
    • 0001614864 scopus 로고    scopus 로고
    • The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm
    • Andersen ED, Andersen KD (2000) The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm. High Perf Optim 33:197-232
    • (2000) High Perf Optim , vol.33 , pp. 197-232
    • Andersen, E.D.1    Andersen, K.D.2
  • 2
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68:337-404
    • (1950) Trans Am Math Soc , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 3
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group Lasso and multiple kernel learning
    • Bach FR (2008) Consistency of the group Lasso and multiple kernel learning. J Mach Learn Res (JMLR) 9:1179-1225
    • (2008) J Mach Learn Res (JMLR) , vol.9 , pp. 1179-1225
    • Bach, F.R.1
  • 5
    • 0000377218 scopus 로고
    • Projected newton methods for optimization problems with simple constraints
    • Bertsekas DP (1982) Projected newton methods for optimization problems with simple constraints. J Control Optim 20(2):221-246
    • (1982) J Control Optim , vol.20 , Issue.2 , pp. 221-246
    • Bertsekas, D.P.1
  • 6
    • 0023776774 scopus 로고
    • Surface vs. edge-based determinants of visual recognition
    • Biederman I, Ju G (1988) Surface vs. edge-based determinants of visual recognition. Cogn Psychol 20(1):38-64
    • (1988) Cogn Psychol , vol.20 , Issue.1 , pp. 38-64
    • Biederman, I.1    Ju, G.2
  • 9
    • 0023416451 scopus 로고
    • Projected gradients methods for linearly constrained problems
    • Calamai PH, Moré JJ (1987) Projected gradients methods for linearly constrained problems. Math Program 39(1):93-116
    • (1987) Math Program , vol.39 , Issue.1 , pp. 93-116
    • Calamai, P.H.1    Moré, J.J.2
  • 13
    • 79959392766 scopus 로고    scopus 로고
    • avaliable at
    • ETH-80 dataset, avaliable at http://www.mis.informatik.tu-darmstadt.de/ Research/Projects/categorization/eth80-db.htm.
    • ETH-80 Dataset
  • 17
    • 70349292517 scopus 로고    scopus 로고
    • Multiple kernel learning from sets of partially matching image features
    • Fu SY, Hou ZG, Liang ZZ, Tan M (2008b) Multiple kernel learning from sets of partially matching image features. In: Proceedings of UKACC
    • (2008) Proceedings of UKACC
    • Fu, S.Y.1    Hou, Z.G.2    Liang, Z.Z.3    Tan, M.4
  • 25
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe D (2004) Distinctive image features from scale-invariant keypoints. Proc IEEE Int J Comput Vis 60(2):91-110
    • (2004) Proc IEEE Int J Comput Vis , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 32
    • 13844281653 scopus 로고    scopus 로고
    • Contour-based object identification and segmentation: Stimuli, norms and data, and software tools
    • Winter JD, Wagemans J (2004) Contour-based object identification and segmentation: Stimuli, norms and data, and software tools. Behav Res Methods Instrum Comput 36(4):604-624
    • (2004) Behav Res Methods Instrum Comput , vol.36 , Issue.4 , pp. 604-624
    • Winter, J.D.1    Wagemans, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.