메뉴 건너뛰기




Volumn , Issue , 2008, Pages 1203-1212

Scalable community discovery on textual data with relations

Author keywords

Clustering; Community mining; Relational data

Indexed keywords

CLUSTERING; CLUSTERING TECHNIQUES; COMMUNITY MINING; COMMUNITY MODEL; CORPUS SIZE; DATA CLUSTERING; INITIAL PARAMETER; LARGE DOCUMENT CORPORA; LARGE-SCALE DATASETS; PRECISION IMPROVEMENT; RELATION ANALYSIS; RELATIONAL DATA; TEXTUAL DATA;

EID: 70349260835     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1458082.1458241     Document Type: Conference Paper
Times cited : (56)

References (23)
  • 1
    • 0027621699 scopus 로고    scopus 로고
    • R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in large databases. In P. Buneman and S. Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pages 207-216, Washington, D.C., 26-28 1993.
    • R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in large databases. In P. Buneman and S. Jajodia, editors, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pages 207-216, Washington, D.C., 26-28 1993.
  • 5
    • 0038589432 scopus 로고    scopus 로고
    • Learning to probabilistically identify authoritative documents
    • Morgan Kaufmann, San Francisco, CA
    • D. Cohn and H. Chang. Learning to probabilistically identify authoritative documents. In Proc. 17th International Conf. on Machine Learning, pages 167-174. Morgan Kaufmann, San Francisco, CA, 2000.
    • (2000) Proc. 17th International Conf. on Machine Learning , pp. 167-174
    • Cohn, D.1    Chang, H.2
  • 6
    • 0005137116 scopus 로고    scopus 로고
    • The missing link - a probabilistic model of document content and hypertext connectivity
    • T. K. Leen, T. G. Dietterich, and V. Tresp, editors, MIT Press
    • D. A. Cohn and T. Hofmann. The missing link - a probabilistic model of document content and hypertext connectivity. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, NIPS, pages 430-436. MIT Press, 2000.
    • (2000) NIPS , pp. 430-436
    • Cohn, D.A.1    Hofmann, T.2
  • 12
    • 1842788824 scopus 로고    scopus 로고
    • Finding scientific topics
    • April
    • T. L. Griffiths and M. Steyvers. Finding scientific topics. Proc Natl Acad Sci U S A, 101 Suppl 1:5228-5235, April 2004.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , Issue.SUPPL. 1 , pp. 5228-5235
    • Griffiths, T.L.1    Steyvers, M.2
  • 15
    • 70349238016 scopus 로고    scopus 로고
    • Web community mining and web log mining: Commodity cluster based execution
    • M. Kitsuregawa, M. Toyoda, and I. Pramudiono. Web community mining and web log mining: commodity cluster based execution. Aust. Comput. Sci. Commun., 24(2):3-10, 2002.
    • (2002) Aust. Comput. Sci. Commun , vol.24 , Issue.2 , pp. 3-10
    • Kitsuregawa, M.1    Toyoda, M.2    Pramudiono, I.3
  • 16
    • 84893721621 scopus 로고    scopus 로고
    • Hubs, authorities, and communities
    • J. M. Kleinberg. Hubs, authorities, and communities. ACM Comput. Surv., page 5.
    • ACM Comput. Surv , pp. 5
    • Kleinberg, J.M.1
  • 21
    • 70349230204 scopus 로고    scopus 로고
    • Learning author topic models from text corpora. Technical report
    • November
    • M. Rosen-Zvi, T. Griffiths, P. Smyth, and M. Steyvers. Learning author topic models from text corpora. Technical report, November 2005.
    • (2005)
    • Rosen-Zvi, M.1    Griffiths, T.2    Smyth, P.3    Steyvers, M.4
  • 23
    • 33749063609 scopus 로고    scopus 로고
    • A concentric-circle model for community mining in graph structures
    • Technical Report MSR-TR-2002-123, Microsoft Research Asia, Beijing, China, November
    • W.-J. Zhou, J.-R. Wen, W.-Y. Ma, and H.-J. Zhang. A concentric-circle model for community mining in graph structures. Technical Report MSR-TR-2002-123, Microsoft Research Asia, Beijing, China, November 2002.
    • (2002)
    • Zhou, W.-J.1    Wen, J.-R.2    Ma, W.-Y.3    Zhang, H.-J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.