메뉴 건너뛰기




Volumn , Issue , 2008, Pages 1073-1082

A consensus based approach to constrained clustering of software requirements

Author keywords

Clustering; Requirements

Indexed keywords

CLUSTERING; CO-ASSOCIATION MATRIX; CONSENSUS CLUSTERING; CONSTRAINED CLUSTERING; CONSTRAINT GENERATION; DATA MINING TECHNIQUES; DATA SETS; FEATURE DETECTION; HIGH QUALITY; HIGH-DIMENSIONAL; INTERACTIVE ENGAGEMENTS; LARGE-SCALE SOFTWARE PROJECTS; NOISY DATA; PROBABILISTIC ANALYSIS; REQUIREMENTS; REQUIREMENTS MANAGEMENT; SEMI-SUPERVISED CLUSTERING; SOFTWARE REQUIREMENTS; USER REQUIREMENTS;

EID: 70349236025     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1458082.1458225     Document Type: Conference Paper
Times cited : (27)

References (25)
  • 1
    • 0036083217 scopus 로고    scopus 로고
    • Frequency sensitive competitive learning for clustering on high-dimensional hyperspheres
    • Honolulu, Hawaii, May
    • Banerjee, A. and Ghosh, J. 2002. Frequency sensitive competitive learning for clustering on high-dimensional hyperspheres. In Proc. IEEE Int. Joint Conf. on Neural Networks (Honolulu, Hawaii, May 2002), pp. 1590-1595.
    • (2002) Proc. IEEE Int. Joint Conf. on Neural Networks , pp. 1590-1595
    • Banerjee, A.1    Ghosh, J.2
  • 2
    • 2542567719 scopus 로고    scopus 로고
    • Semi-supervised Clustering by Seeding
    • July 08, 12, C. Sammut and A. G. Hoffmann, Eds. Morgan Kaufmann Publishers, San Francisco, CA
    • Basu, S., Banerjee, A., and Mooney, R. J. 2002. Semi-supervised Clustering by Seeding. In Proceedings of the Nineteenth international Conference on Machine Learning (July 08 - 12, 2002). C. Sammut and A. G. Hoffmann, Eds. Morgan Kaufmann Publishers, San Francisco, CA, 27-34.
    • (2002) Proceedings of the Nineteenth international Conference on Machine Learning , pp. 27-34
    • Basu, S.1    Banerjee, A.2    Mooney, R.J.3
  • 4
    • 12244300524 scopus 로고    scopus 로고
    • Basu, S., Bilenko, M., and Mooney, R. J. 2004. A probabilistic framework for semi-supervised clustering. In Proceedings of the Tenth ACM SIGKDD international Conference on Knowledge Discovery and Data Mining (Seattle, WA, USA, August 22 - 25, 2004). KDD '04. ACM, New York, NY, 59-68.
    • Basu, S., Bilenko, M., and Mooney, R. J. 2004. A probabilistic framework for semi-supervised clustering. In Proceedings of the Tenth ACM SIGKDD international Conference on Knowledge Discovery and Data Mining (Seattle, WA, USA, August 22 - 25, 2004). KDD '04. ACM, New York, NY, 59-68.
  • 5
    • 70349228705 scopus 로고    scopus 로고
    • Bennett, K.P., Bradley, P.S. and Demiriz, 2000. A. Constrained K-Means Clustering. Microsoft Technical Report, May 2000.
    • Bennett, K.P., Bradley, P.S. and Demiriz, 2000. A. Constrained K-Means Clustering. Microsoft Technical Report, May 2000.
  • 6
    • 14344264451 scopus 로고    scopus 로고
    • Bilenko, M., Basu, S., and Mooney, R. J. 2004. Integrating constraints and metric learning in semi-supervised clustering. In Proceedings of the Twenty-First international Conference on Machine Learning (Banff, Alberta, Canada, July 04 - 08, 2004). ICML '04, 69. ACM, New York, NY, 11.
    • Bilenko, M., Basu, S., and Mooney, R. J. 2004. Integrating constraints and metric learning in semi-supervised clustering. In Proceedings of the Twenty-First international Conference on Machine Learning (Banff, Alberta, Canada, July 04 - 08, 2004). ICML '04, vol. 69. ACM, New York, NY, 11.
  • 7
    • 58049174115 scopus 로고    scopus 로고
    • Castro-Herrera, C., Duan, C., Cleland-Huang, J. and Mobasher, B. 2008. Using Data Mining and Recommender Systems to Facilitate Large-Scale, Open, and Inclusive Requirements Elicitation Processes, Short Paper, IEEE Conf. on Requirements Eng., (Barcelona, Spain, Sept. 2008).
    • Castro-Herrera, C., Duan, C., Cleland-Huang, J. and Mobasher, B. 2008. Using Data Mining and Recommender Systems to Facilitate Large-Scale, Open, and Inclusive Requirements Elicitation Processes, Short Paper, IEEE Conf. on Requirements Eng., (Barcelona, Spain, Sept. 2008).
  • 8
    • 57349152362 scopus 로고    scopus 로고
    • Using Data Mining and Recommender Systems to Scale up the Requirements Process
    • Leipzig, Germany, May
    • Cleland-Huang, J. and Mobasher, B. 2008. Using Data Mining and Recommender Systems to Scale up the Requirements Process, ACM Intn'l Workshop on Ultra-Large Software Systems,(Leipzig, Germany, May, 2008), 3-6.
    • (2008) ACM Intn'l Workshop on Ultra-Large Software Systems , pp. 3-6
    • Cleland-Huang, J.1    Mobasher, B.2
  • 9
    • 9444230302 scopus 로고    scopus 로고
    • Semi-supervised clustering with user feedback
    • Technical Report TR2003-1892, Cornell University
    • Cohn, D., Caruana R., and McCallum, A. 2003. Semi-supervised clustering with user feedback. Technical Report TR2003-1892, Cornell University, 2003.
    • (2003)
    • Cohn, D.1    Caruana, R.2    McCallum, A.3
  • 12
    • 38049127336 scopus 로고    scopus 로고
    • Measuring Constraint-Set Utility for Partitional Clustering Algorithms
    • Davidson I., Wagstaff, K., and Basu, S. 2006. Measuring Constraint-Set Utility for Partitional Clustering Algorithms, In Proceeding of ECML/PKDD, 2006.
    • (2006) Proceeding of ECML/PKDD
    • Davidson, I.1    Wagstaff, K.2    Basu, S.3
  • 13
    • 34547973747 scopus 로고    scopus 로고
    • Davidson, I. and Ravi, S. S. 2007. Intractability and clustering with constraints. In Proceedings of the 24th international Conference on Machine Learning (Corvalis, Oregon, June 20 - 24, 2007). Z. Ghahramani, Ed. ICML '07, 227. ACM, New York, NY, 201-208.
    • Davidson, I. and Ravi, S. S. 2007. Intractability and clustering with constraints. In Proceedings of the 24th international Conference on Machine Learning (Corvalis, Oregon, June 20 - 24, 2007). Z. Ghahramani, Ed. ICML '07, vol. 227. ACM, New York, NY, 201-208.
  • 14
    • 55049106164 scopus 로고    scopus 로고
    • Duan, C. and Cleland-Huang, J. 2007. Clustering support for automated tracing. In Proceedings of the Twenty-Second IEEE/ACM international Conference on Automated Software Engineering (Atlanta, Georgia, USA, November 05 - 09, 2007). ASE '07. ACM, New York, NY, 244-253.
    • Duan, C. and Cleland-Huang, J. 2007. Clustering support for automated tracing. In Proceedings of the Twenty-Second IEEE/ACM international Conference on Automated Software Engineering (Atlanta, Georgia, USA, November 05 - 09, 2007). ASE '07. ACM, New York, NY, 244-253.
  • 15
    • 70349248849 scopus 로고    scopus 로고
    • Duan, C., Clustering and its Application in Requirements Engineering, Technical Report #08-001, School of Computing, (DePaul University, February, 2008).
    • Duan, C., Clustering and its Application in Requirements Engineering, Technical Report #08-001, School of Computing, (DePaul University, February, 2008).
  • 16
    • 1942517297 scopus 로고    scopus 로고
    • Random projection for high dimensional data clustering: A cluster ensemble approach
    • Washington, DC
    • Fern, X. Z. and Brodley, C. E. 2003. Random projection for high dimensional data clustering: A cluster ensemble approach. In Proc. of ICML'03, Washington, DC (2003) 186-193.
    • (2003) Proc. of ICML'03 , pp. 186-193
    • Fern, X.Z.1    Brodley, C.E.2
  • 17
    • 14344258244 scopus 로고    scopus 로고
    • Fern, X. Z. and Brodley, C. E. 2004. Solving cluster ensemble problems by bipartite graph partitioning. In Proceedings of the Twenty-First international Conference on Machine Learning (Banff, Alberta, Canada, July 04 - 08, 2004). ICML '04, 69. ACM, New York, NY, 36.
    • Fern, X. Z. and Brodley, C. E. 2004. Solving cluster ensemble problems by bipartite graph partitioning. In Proceedings of the Twenty-First international Conference on Machine Learning (Banff, Alberta, Canada, July 04 - 08, 2004). ICML '04, vol. 69. ACM, New York, NY, 36.
  • 19
    • 38049153395 scopus 로고    scopus 로고
    • Constraint Selection by Committee: An Ensemble Approach to Identifying Informative Constraints for Semi-Supervised Clustering
    • Springer
    • Greene, D. 2007. Constraint Selection by Committee: An Ensemble Approach to Identifying Informative Constraints for Semi-Supervised Clustering. In Proc. 18th European Conf. on Machine Learning (ECML'07), 140-151, Springer.
    • (2007) Proc. 18th European Conf. on Machine Learning (ECML'07) , pp. 140-151
    • Greene, D.1
  • 21
    • 49749129595 scopus 로고    scopus 로고
    • Solving Consensus and Semi-supervised Clustering Problems Using Nonnegative Matrix Factorization
    • Li, T., Ding C., and Jordan M.I. 2007. Solving Consensus and Semi-supervised Clustering Problems Using Nonnegative Matrix Factorization. ICDM 2007: 577-582.
    • (2007) ICDM 2007 , pp. 577-582
    • Li, T.1    Ding, C.2    Jordan, M.I.3
  • 22
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining multiple partitions
    • Mar
    • Strehl, A. and Ghosh, J. 2003. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3 (Mar. 2003), 583-617.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 23
    • 36849025479 scopus 로고    scopus 로고
    • Tang, W., Xiong, H., Zhong, S., and Wu, J. 2007. Enhancing semi-supervised clustering: a feature projection perspective. In Proceedings of the 13th ACM SIGKDD international Conference on Knowledge Discovery and Data Mining (San Jose, California, USA, August 12 - 15, 2007). KDD '07. ACM, New York, NY, 707-716.
    • Tang, W., Xiong, H., Zhong, S., and Wu, J. 2007. Enhancing semi-supervised clustering: a feature projection perspective. In Proceedings of the 13th ACM SIGKDD international Conference on Knowledge Discovery and Data Mining (San Jose, California, USA, August 12 - 15, 2007). KDD '07. ACM, New York, NY, 707-716.
  • 24
    • 70349238123 scopus 로고    scopus 로고
    • Combining Multiple Weak Clusterings. In Proceedings of the Third IEEE international Conference on Data Mining (November 19 - 22, 2003). ICDM
    • Washington, DC
    • Topchy, A., Jain, A. K., and Punch, W. 2003. Combining Multiple Weak Clusterings. In Proceedings of the Third IEEE international Conference on Data Mining (November 19 - 22, 2003). ICDM. IEEE Computer Society, Washington, DC, 331.
    • (2003) IEEE Computer Society , pp. 331
    • Topchy, A.1    Jain, A.K.2    Punch, W.3
  • 25
    • 0042377235 scopus 로고    scopus 로고
    • Constrained K-means Clustering with Background Knowledge
    • June 28, July 01, C. E. Brodley and A. P. Danyluk, Eds. Morgan Kaufmann Publishers, San Francisco, CA
    • Wagstaff, K., Cardie, C., Rogers, S., and Schrödl, S. 2001. Constrained K-means Clustering with Background Knowledge. In Proceedings of the Eighteenth international Conference on Machine Learning (June 28 - July 01, 2001). C. E. Brodley and A. P. Danyluk, Eds. Morgan Kaufmann Publishers, San Francisco, CA, 577-584.
    • (2001) Proceedings of the Eighteenth international Conference on Machine Learning , pp. 577-584
    • Wagstaff, K.1    Cardie, C.2    Rogers, S.3    Schrödl, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.