-
1
-
-
0033295259
-
Bro: A system for detecting network intruders in real-time
-
Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Computer Networks 31(23-24), 2435-2463 (1999)
-
(1999)
Computer Networks
, vol.31
, Issue.23-24
, pp. 2435-2463
-
-
Paxson, V.1
-
2
-
-
0002629036
-
EMERALD: Event monitoring enabling responses to anomalous live disturbances
-
Porras, P.A., Neumann, P.G.: EMERALD: Event Monitoring Enabling Responses to Anomalous Live Disturbances. In: 9th National Computer Security Conference, pp. 353-365 (1997)
-
(1997)
9th National Computer Security Conference
, pp. 353-365
-
-
Porras, P.A.1
Neumann, P.G.2
-
3
-
-
24944591774
-
ADWICE - Anomaly detection with real-time incremental clustering
-
Park, C.-s., Chee, S. (eds.) ICISC 2004. Springer, Heidelberg
-
Burbeck, K., Nadjm-Tehrani, S.: ADWICE - Anomaly Detection with Real-Time Incremental Clustering. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol.3506, pp. 407-424. Springer, Heidelberg (2005)
-
(2005)
LNCS
, vol.3506
, pp. 407-424
-
-
Burbeck, K.1
Nadjm-Tehrani, S.2
-
5
-
-
12244300524
-
A probabilistic framework for semi-supervised clustering
-
ACM Press, New York
-
Basu, S., Bilenko, M., Mooney, R.J.: A Probabilistic Framework for Semi-Supervised Clustering. In: 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 59-68. ACM Press, New York (2004)
-
(2004)
10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 59-68
-
-
Basu, S.1
Bilenko, M.2
Mooney, R.J.3
-
6
-
-
0042377235
-
Constrained K-means clustering with background knowledge
-
Morgan Kaufmann, San Francisco
-
Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained K-Means Clustering with Background Knowledge. In: 18th International Conference on Machine Learning, pp. 577-584. Morgan Kaufmann, San Francisco (2001)
-
(2001)
18th International Conference on Machine Learning
, pp. 577-584
-
-
Wagstaff, K.1
Cardie, C.2
Rogers, S.3
Schroedl, S.4
-
7
-
-
0036042175
-
Models and issues in data streams
-
ACM Press, Madison
-
Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data Streams. In: 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 1-16. ACM Press, Madison (2002)
-
(2002)
21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
, pp. 1-16
-
-
Babcock, B.1
Babu, S.2
Datar, M.3
Motwani, R.4
Widom, J.5
-
8
-
-
19944393216
-
On change diagnosis in evolving data streams
-
Aggarwal, C.C.: On Change Diagnosis in Evolving Data Streams. IEEE Trans. Knowl. Data Eng. 17(5), 587-600 (2005)
-
(2005)
IEEE Trans. Knowl. Data Eng
, vol.17
, Issue.5
, pp. 587-600
-
-
Aggarwal, C.C.1
-
9
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
ACM Press, Montreal
-
Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An Efficient Data Clustering Method for Very Large Databases. In: 1996 ACM SIGMOD International Conference on Management of Data, pp. 103-114. ACM Press, Montreal (1996)
-
(1996)
1996 ACM SIGMOD International Conference on Management of Data
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
-
11
-
-
10844230994
-
Intrusion detection using an ensemble of intelligent paradigms
-
Mukkamala, S., Sung, A.H., Abraham, A.: Intrusion Detection using An Ensemble of Intelligent Paradigms. J. Netw. Comput. Appl. 28(2), 167-182 (2005)
-
(2005)
J. Netw. Comput. Appl
, vol.28
, Issue.2
, pp. 167-182
-
-
Mukkamala, S.1
Sung, A.H.2
Abraham, A.3
-
12
-
-
4644256188
-
-
The UCI KDD Archive, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99. html
-
The UCI KDD Archive
-
-
-
13
-
-
0242625275
-
Predicting rare classes: Can boosting make any weak learner strong?
-
ACM Press, Edmonton
-
Joshi, M., Agarwal, R., Kumar, V.: Predicting Rare Classes: Can Boosting Make Any Weak Learner Strong? In: 8th ACM Conference ACM SiGKDD International Conference on Knowledge Discovery and Data Mining, pp. 297-306. ACM Press, Edmonton (2002)
-
(2002)
8th ACM Conference ACM SiGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 297-306
-
-
Joshi, M.1
Agarwal, R.2
Kumar, V.3
|