메뉴 건너뛰기




Volumn 30, Issue 15, 2009, Pages 1384-1391

An incremental learning algorithm for Lagrangian support vector machines

Author keywords

Incremental learning; Lagrangian; Online learning; Support vector machines

Indexed keywords

COMPUTATION TIME; COMPUTING PROCESS; CONVEX PROGRAMMING; INCREMENTAL LEARNING; INPUT SPACE; LAGRANGIAN; LINEAR CONVERGENCE; LINEAR SVM; MATRIX; ONLINE LEARNING; SOLVING ALGORITHM;

EID: 70349135848     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2009.07.006     Document Type: Article
Times cited : (32)

References (28)
  • 1
    • 0033721433 scopus 로고    scopus 로고
    • Massive data discrimination via linear support vector machines
    • Bradley P.S., and Mangasarian O.L. Massive data discrimination via linear support vector machines. Optimiz. Methods Software 13 (2000) 1-10
    • (2000) Optimiz. Methods Software , vol.13 , pp. 1-10
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Knowl. Discovery Data Mining 2 (1998) 121-167
    • (1998) Knowl. Discovery Data Mining , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 3
    • 80052866161 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • MIT Press
    • Cauwenberghs G., and Poggio T. Incremental and decremental support vector machine learning. Adv. Neural Information Processing vol. 13 (2001), MIT Press
    • (2001) Adv. Neural Information Processing , vol.13
    • Cauwenberghs, G.1    Poggio, T.2
  • 4
    • 70349095627 scopus 로고    scopus 로고
    • Chang, C.-C., Lin. C.-J., 2001. LIBSVM - A Library for Support Vector Machines. .
    • Chang, C.-C., Lin. C.-J., 2001. LIBSVM - A Library for Support Vector Machines. .
  • 5
    • 33750506073 scopus 로고    scopus 로고
    • An improved incremental training algorithm for support vector machines using active query
    • Cheng S.X., and Shih F.Y. An improved incremental training algorithm for support vector machines using active query. Pattern Recognition 40 (2007) 964-971
    • (2007) Pattern Recognition , vol.40 , pp. 964-971
    • Cheng, S.X.1    Shih, F.Y.2
  • 7
    • 0003819899 scopus 로고    scopus 로고
    • Interior point methods for massive support vector machines
    • Technical Report 00-05. Computer Sciences Department, University of Wisconsin, Madison
    • Ferris, M.C., Munson, T.S., 2000. Interior point methods for massive support vector machines. Technical Report 00-05. Computer Sciences Department, University of Wisconsin, Madison.
    • (2000)
    • Ferris, M.C.1    Munson, T.S.2
  • 8
    • 0034592781 scopus 로고    scopus 로고
    • Fung, G., Mangasarian, O.L., 2000. Data selection for support vector machine classifiers. Data Mining Institute Technical Report 00-02, February 2000. Proc. Sixth ACM SIGKDD Internat. Conf. on Knowledge Discovery and Data Mining, August 20-23, 2000.
    • Fung, G., Mangasarian, O.L., 2000. Data selection for support vector machine classifiers. Data Mining Institute Technical Report 00-02, February 2000. Proc. Sixth ACM SIGKDD Internat. Conf. on Knowledge Discovery and Data Mining, August 20-23, 2000.
  • 9
    • 0035789613 scopus 로고    scopus 로고
    • Proximal support vector machine classifiers
    • Provost, F, Srikant, R, Eds, August 26-29, San Francisco, CA, New York, pp
    • Fung, G., Mangasarian, O.L., 2001. Proximal support vector machine classifiers. In: Provost, F., Srikant, R. (Eds.), Proc. KDD-2001: Knowledge Discovery and Data Mining, August 26-29, 2001, San Francisco, CA, New York, pp. 77-86.
    • (2001) Proc. KDD-2001: Knowledge Discovery and Data Mining , pp. 77-86
    • Fung, G.1    Mangasarian, O.L.2
  • 11
    • 0003307180 scopus 로고    scopus 로고
    • Estimating the generalization performance of a SVM efficiently
    • Morgan Kaufmann, San Francisco
    • Joachims T. Estimating the generalization performance of a SVM efficiently. Proc. Internat. Conf. on Machine Learning (2000), Morgan Kaufmann, San Francisco
    • (2000) Proc. Internat. Conf. on Machine Learning
    • Joachims, T.1
  • 13
    • 0012487218 scopus 로고    scopus 로고
    • RSVM: Reduced support vector machines
    • Technical Report 00-07. Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison
    • Lee, Y.-J., Mangasarian, O.L., 2000. RSVM: Reduced support vector machines. Technical Report 00-07. Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison.
    • (2000)
    • Lee, Y.-J.1    Mangasarian, O.L.2
  • 15
    • 0001777975 scopus 로고    scopus 로고
    • Generalized support vector machines
    • Smola A., Bartlett P., Schölkopf B., and Schuurmans D. (Eds), MIT Press, Cambridge, MA
    • Mangasarian O.L. Generalized support vector machines. In: Smola A., Bartlett P., Schölkopf B., and Schuurmans D. (Eds). Advances in Large Margin Classifiers (2000), MIT Press, Cambridge, MA 135-146
    • (2000) Advances in Large Margin Classifiers , pp. 135-146
    • Mangasarian, O.L.1
  • 16
    • 0242420030 scopus 로고    scopus 로고
    • Finite Newton method for Lagrangian support vector machine classification
    • Technical Report 02-01. Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin
    • Fung,G., Mangasarian, O.L., 2002. Finite Newton method for Lagrangian support vector machine classification. Technical Report 02-01. Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin. .
    • (2002)
    • Fung, G.1    Mangasarian, O.L.2
  • 17
    • 0032594961 scopus 로고    scopus 로고
    • Successive overrelaxation for support vector machines
    • Mangasarian O.L., and Musicant D.R. Successive overrelaxation for support vector machines. IEEE Trans. Neural Networks 10 (1999) 1032-1037
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 1032-1037
    • Mangasarian, O.L.1    Musicant, D.R.2
  • 20
    • 34250076671 scopus 로고
    • Nonlinear complementarity as unconstrained and constrained minimization
    • Mangasarian O.L., and Solodov M.V. Nonlinear complementarity as unconstrained and constrained minimization. Math. Program., Ser. B 62 (1993) 277-297
    • (1993) Math. Program., Ser. B , vol.62 , pp. 277-297
    • Mangasarian, O.L.1    Solodov, M.V.2
  • 21
    • 38049104229 scopus 로고
    • Peking University, China High Education Press, Beijing
    • Peking University. Advanced Algebra. China High Education Press, Beijing, 1987.
    • (1987) Advanced Algebra
  • 22
    • 85023549699 scopus 로고
    • A case study of incremental concept induction
    • Kehler T., and Rosenschein S. (Eds), Morgan Kaufmann, Philadelphia, San Mateo, CA
    • Schlimmer J.C., and Fisher D.H. A case study of incremental concept induction. In: Kehler T., and Rosenschein S. (Eds). Proc. Fifth National Conf. on Artificial Intelligence vol. 1 (1986), Morgan Kaufmann, Philadelphia, San Mateo, CA 496-501
    • (1986) Proc. Fifth National Conf. on Artificial Intelligence , vol.1 , pp. 496-501
    • Schlimmer, J.C.1    Fisher, D.H.2
  • 23
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • Schlimmer J.C., and Granger R.H. Incremental learning from noisy data. Machine Learn. 1 (1986) 317-354
    • (1986) Machine Learn. , vol.1 , pp. 317-354
    • Schlimmer, J.C.1    Granger, R.H.2
  • 26
    • 0002635005 scopus 로고
    • An improved algorithm for incremental induction decision trees
    • Technical Report 94-07, Department of Computer Science, University of Massachusetts, Amherst, MA 01003
    • Utgoff, P.E., 1994. An improved algorithm for incremental induction decision trees. Technical Report 94-07, Department of Computer Science, University of Massachusetts, Amherst, MA 01003.
    • (1994)
    • Utgoff, P.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.