메뉴 건너뛰기




Volumn , Issue , 2008, Pages 81-88

Exploring semi-supervised and active learning for activity recognition

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE LEARNING; ACTIVITY RECOGNITION; CO-TRAINING; DATA SETS; ERROR PRONES; HUMAN ACTIVITY RECOGNITION; LABELED TRAINING DATA; REAL WORLD DATA; SELF-TRAINING; SEMI-SUPERVISED; TRAINING DATA; WEARABLE SENSORS;

EID: 70349123070     PISSN: 15504816     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISWC.2008.4911590     Document Type: Conference Paper
Times cited : (174)

References (25)
  • 1
    • 31744452354 scopus 로고    scopus 로고
    • Active learning for hidden Markov models: Objective functions and algorithms
    • B. Anderson and A. Moore. Active Learning for Hidden Markov Models: Objective Functions and Algorithms. In ICML'05.
    • ICML'05
    • Anderson, B.1    Moore, A.2
  • 2
    • 4644220755 scopus 로고    scopus 로고
    • Activity recognition from user- annotated acceleration data
    • L. Bao and S. Intille. Activity Recognition from User- Annotated Acceleration Data. In Pervasive'04.
    • Pervasive'04
    • Bao, L.1    Intille, S.2
  • 3
    • 0002993682 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining Labeled and Unlabeled data with Co-Training. In COLT'98.
    • COLT'98
    • Blum, A.1    Mitchell, T.2
  • 6
    • 70349148450 scopus 로고    scopus 로고
    • Unsupervised discovery of structure in activity data using multiple eigenspaces
    • T. Huynh and B. Schiele. Unsupervised Discovery of structure in Activity Data using Multiple Eigenspaces. In LoCA'06.
    • LoCA'06
    • Huynh, T.1    Schiele, B.2
  • 7
    • 33750359144 scopus 로고    scopus 로고
    • Using a live-in laboratory for ubiquitous computing research
    • S. S. Intille et al. Using a Live-In Laboratory for Ubiquitous computing Research. In Pervasive'06.
    • Pervasive'06
    • Intille, S.S.1
  • 8
    • 70349130192 scopus 로고    scopus 로고
    • Experience sampling for building predictive user models: A comparative study
    • A. Kapoor and E. Horvitz. Experience Sampling for Building Predictive User Models: A Comparative Study. In CHI'08.
    • CHI'08
    • Kapoor, A.1    Horvitz, E.2
  • 9
    • 85069299479 scopus 로고    scopus 로고
    • Unsupervised, dynamic identification of physiological and activity context in wearable computing
    • A. Krause, D. Siewiorek, A. Smailagic, and J. Farringdon. Unsupervised, Dynamic Identification of Physiological and Activity Context in Wearable Computing. In ISWC'03.
    • ISWC'03
    • Krause, A.1    Siewiorek, D.2    Smailagic, A.3    Farringdon, J.4
  • 12
    • 49249121643 scopus 로고    scopus 로고
    • A long-term evaluation of sensing modalities for activity recognition
    • Dataset
    • B. Logan, J. Healey, M. Philipose, E. Tapia, and S. Intille. A Long-Term Evaluation of Sensing Modalities for Activity Recognition. In Ubicomp '07. Dataset http://architecture.mit.edu/house-n/data/PlaceLab/PlaceLab.htm.
    • Ubicomp '07
    • Logan, B.1    Healey, J.2    Philipose, M.3    Tapia, E.4    Intille, S.5
  • 13
    • 85138478363 scopus 로고    scopus 로고
    • Fast and scalable training of semi-supervised CRFs with application to activity recognition
    • M. Mahdaviani and T. Choudhury. Fast and Scalable Training f Semi-Supervised CRFs with Application to Activity recognition. In NIPS'07.
    • NIPS'07
    • Mahdaviani, M.1    Choudhury, T.2
  • 14
    • 43949136939 scopus 로고    scopus 로고
    • Discovering characteristic actions from on-body sensor data
    • D. Minnen, T. Starner, I. Essa, and C. Isbell. Discovering Characteristic Actions from On-Body Sensor Data. In ISWC'06.
    • ISWC'06
    • Minnen, D.1    Starner, T.2    Essa, I.3    Isbell, C.4
  • 17
    • 43949128414 scopus 로고    scopus 로고
    • Combining motion sensors and ultrasonic hands tracking for continuous activity recognition in a maintenance scenario
    • T. Stiefmeier, G. Ogris, H. Junker, P. Lukowicz, and . Tröster. Combining Motion Sensors and Ultrasonic Hands Tracking for Continuous Activity Recognition in a Maintenance Scenario. In ISWC'06.
    • ISWC'06
    • Stiefmeier, T.1    Ogris, G.2    Junker, H.3    Lukowicz, P.4    Tröster, G.5
  • 18
    • 80053177991 scopus 로고    scopus 로고
    • Recognizing activities and spatial context using wearable sensors
    • A. Subramanya, A. Raj, J. Blimes, and D. Fox. Recognizing Activities and Spatial Context Using Wearable Sensors. In UAI'06.
    • UAI'06
    • Subramanya, A.1    Raj, A.2    Blimes, J.3    Fox, D.4
  • 19
    • 4644241838 scopus 로고    scopus 로고
    • Activity recognition in the home using simple and ubiquitous sensors
    • E. M. Tapia, S. S. Intille, and K. Larson. Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In Pervasive'04.
    • Pervasive'04
    • Tapia, E.M.1    Intille, S.S.2    Larson, K.3
  • 20
    • 70349141603 scopus 로고    scopus 로고
    • The design of a portable kit of wireless sensors for naturalistic data collection
    • E. M. Tapia, S. S. Intille, L. Lopez, and K. Larson. The Design of a Portable Kit of Wireless Sensors for Naturalistic Data Collection. In Pervasive'06.
    • Pervasive'06
    • Tapia, E.M.1    Intille, S.S.2    Lopez, L.3    Larson, K.4
  • 21
    • 5044224293 scopus 로고    scopus 로고
    • Sharing features: Efficient boosting procedures for multiclass object detection
    • A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing features: efficient boosting procedures for multiclass object etection. In CVPR'04.
    • CVPR'04
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3
  • 23
    • 52149104468 scopus 로고    scopus 로고
    • Gesture spotting using wrist worn microphone and 3-axis accelerometer
    • J. Ward, P. Lukowicz, and G. Tröster. Gesture Spotting Using Wrist Worn Microphone and 3-Axis Accelerometer. In sOc-EUSAI, 2005.
    • (2005) SOc-Eusai
    • Ward, J.1    Lukowicz, P.2    Tröster, G.3
  • 25
    • 33750376951 scopus 로고    scopus 로고
    • Unsupervised activity recognition using automatically mined common sense
    • D. Wyatt, M. Philipose, and T. Choudhury. Unsupervised Activity Recognition Using Automatically Mined Common Sense. In AAAI'05
    • AAAI'05
    • Wyatt, D.1    Philipose, M.2    Choudhury, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.