-
1
-
-
29044450581
-
-
10.1021/ja056793c
-
Y. Y. Zhang, J. Zhang, H. B. Son, J. Kong, and Z. F. Liu, J. Am. Chem. Soc. 127, 17156 (2005). 10.1021/ja056793c
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 17156
-
-
Zhang, Y.Y.1
Zhang, J.2
Son, H.B.3
Kong, J.4
Liu, Z.F.5
-
2
-
-
34547592482
-
-
10.1021/nl070980m
-
Z. Jin, H. B. Chu, J. Y. Wang, J. X. Hong, W. C. Tan, and Y. Li, Nano Lett. 7, 2073 (2007). 10.1021/nl070980m
-
(2007)
Nano Lett.
, vol.7
, pp. 2073
-
-
Jin, Z.1
Chu, H.B.2
Wang, J.Y.3
Hong, J.X.4
Tan, W.C.5
Li, Y.6
-
3
-
-
34047163148
-
-
10.1021/nl063006g
-
B. Gao, X. Duan, J. Zhang, T. Wu, H. Son, J. Kong, and Z. Liu, Nano Lett. 7, 750 (2007). 10.1021/nl063006g
-
(2007)
Nano Lett.
, vol.7
, pp. 750
-
-
Gao, B.1
Duan, X.2
Zhang, J.3
Wu, T.4
Son, H.5
Kong, J.6
Liu, Z.7
-
4
-
-
34547574391
-
-
10.1021/nl0711155
-
X. Duan, H. Son, B. Gao, J. Zhang, T. Wu, G. G. Samsonidze, M. S. Dresselhaus, Z. Liu, and J. Kong, Nano Lett. 7, 2116 (2007). 10.1021/nl0711155
-
(2007)
Nano Lett.
, vol.7
, pp. 2116
-
-
Duan, X.1
Son, H.2
Gao, B.3
Zhang, J.4
Wu, T.5
Samsonidze, G.G.6
Dresselhaus, M.S.7
Liu, Z.8
Kong, J.9
-
5
-
-
15544375926
-
-
10.1126/science.1072631
-
M. J. O'Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science 297, 593 (2002). 10.1126/science.1072631
-
(2002)
Science
, vol.297
, pp. 593
-
-
O'Connell, M.J.1
Bachilo, S.M.2
Huffman, C.B.3
Moore, V.C.4
Strano, M.S.5
Haroz, E.H.6
Rialon, K.L.7
Boul, P.J.8
Noon, W.H.9
Kittrell, C.10
Ma, J.P.11
Hauge, R.H.12
Weisman, R.B.13
Smalley, R.E.14
-
7
-
-
33644957132
-
-
10.1103/PhysRevLett.96.106805
-
D. Karaiskaj, C. Engtrakul, T. McDonald, M. J. Heben, and A. Mascarenhas, Phys. Rev. Lett. 96, 106805 (2006). 10.1103/PhysRevLett.96.106805
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 106805
-
-
Karaiskaj, D.1
Engtrakul, C.2
McDonald, T.3
Heben, M.J.4
Mascarenhas, A.5
-
8
-
-
46749099467
-
-
10.1021/nl0800974
-
A. V. Naumov, S. M. Bachilo, D. A. Tsyboulski, and R. B. Weisman, Nano Lett. 8, 1527 (2008). 10.1021/nl0800974
-
(2008)
Nano Lett.
, vol.8
, pp. 1527
-
-
Naumov, A.V.1
Bachilo, S.M.2
Tsyboulski, D.A.3
Weisman, R.B.4
-
9
-
-
33847275562
-
-
10.1103/PhysRevB.75.075421
-
O. Kiowski, S. Lebedkin, F. Hennrich, S. Malik, H. Rosner, K. Arnold, C. Sürgers, and M. M. Kappes, Phys. Rev. B 75, 075421 (2007). 10.1103/PhysRevB.75.075421
-
(2007)
Phys. Rev. B
, vol.75
, pp. 075421
-
-
Kiowski, O.1
Lebedkin, S.2
Hennrich, F.3
Malik, S.4
Rosner, H.5
Arnold, K.6
Sürgers, C.7
Kappes, M.M.8
-
10
-
-
33748321956
-
-
10.1021/nl060530e
-
J. Lefebvre, D. G. Austing, J. Bond, and P. Finnie, Nano Lett. 6, 1603 (2006). 10.1021/nl060530e
-
(2006)
Nano Lett.
, vol.6
, pp. 1603
-
-
Lefebvre, J.1
Austing, D.G.2
Bond, J.3
Finnie, P.4
-
11
-
-
0042691521
-
-
10.1126/science.1087118
-
A. Hartschuh, H. N. Pedrosa, L. Novotny, and T. D. Krauss, Science 301, 1354 (2003). 10.1126/science.1087118
-
(2003)
Science
, vol.301
, pp. 1354
-
-
Hartschuh, A.1
Pedrosa, H.N.2
Novotny, L.3
Krauss, T.D.4
-
12
-
-
4043075472
-
-
10.1103/PhysRevLett.93.027401
-
H. Htoon, M. J. O'Connell, P. J. Cox, S. K. Doorn, and V. I. Klimov, Phys. Rev. Lett. 93, 027401 (2004). 10.1103/PhysRevLett.93.027401
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 027401
-
-
Htoon, H.1
O'Connell, M.J.2
Cox, P.J.3
Doorn, S.K.4
Klimov, V.I.5
-
14
-
-
36849057063
-
-
10.1002/pssb.200776163
-
S.-S. Jester, O. Kiowski, S. Lebedkin, F. Hennrich, R. Fischer, N. Stürzl, J. Hawecker, and M. M. Kappes, Phys. Status Solidi B 244, 3973 (2007). 10.1002/pssb.200776163
-
(2007)
Phys. Status Solidi B
, vol.244
, pp. 3973
-
-
Jester, S.-S.1
Kiowski, O.2
Lebedkin, S.3
Hennrich, F.4
Fischer, R.5
Stürzl, N.6
Hawecker, J.7
Kappes, M.M.8
-
15
-
-
70349153495
-
-
See EPAPS Document No. E-PRBMDO-80-068931 for Supplementary Information: details of the AFM manipulation procedure; a typical microphotoluminescence map of an air-suspended nanotube segment (Fig. S1); profiles of the relative PL intensity and E11 and E22 transition energies as measured along the AFM-manipulated SWNT 2 (Fig. S2); an SEM image of the impurity particle pushed over SWNT 1 (Fig. S3). For more information on EPAPS, see
-
See EPAPS Document No. E-PRBMDO-80-068931 for Supplementary Information: details of the AFM manipulation procedure; a typical microphotoluminescence map of an air-suspended nanotube segment (Fig. S1); profiles of the relative PL intensity and E11 and E22 transition energies as measured along the AFM-manipulated SWNT 2 (Fig. S2); an SEM image of the impurity particle pushed over SWNT 1 (Fig. S3). For more information on EPAPS, see http://www.aip.org/ pubservs/epaps.html.
-
-
-
-
16
-
-
70349086145
-
-
Substrates with SWNTs were typically characterized by scanning electron microscopy after the AFM and PL experiments to avoid any possible damage of nanotubes by the electron beam. SEM images of nanotubes could then be readily correlated with the AFM and PL data due to markers on the substrates.
-
Substrates with SWNTs were typically characterized by scanning electron microscopy after the AFM and PL experiments to avoid any possible damage of nanotubes by the electron beam. SEM images of nanotubes could then be readily correlated with the AFM and PL data due to markers on the substrates.
-
-
-
-
17
-
-
1642380393
-
-
10.1063/1.1640339
-
Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, and G. R. Fleming, J. Chem. Phys. 120, 3368 (2004). 10.1063/1.1640339
-
(2004)
J. Chem. Phys.
, vol.120
, pp. 3368
-
-
Ma, Y.-Z.1
Stenger, J.2
Zimmermann, J.3
Bachilo, S.M.4
Smalley, R.E.5
Weisman, R.B.6
Fleming, G.R.7
-
19
-
-
61749093119
-
-
10.1021/nl8030086
-
V. Perebeinos, S. V. Rotkin, A. G. Petrov, and P. Avouris, Nano Lett. 9, 312 (2009). 10.1021/nl8030086
-
(2009)
Nano Lett.
, vol.9
, pp. 312
-
-
Perebeinos, V.1
Rotkin, S.V.2
Petrov, A.G.3
Avouris, P.4
-
20
-
-
15544385328
-
-
10.1021/jp0463159
-
S. K. Doorn, L. Zheng, M. J. O'Connell, Y. Zhu, S. Huang, and J. Liu, J. Phys. Chem. B 109, 3751 (2005). 10.1021/jp0463159
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 3751
-
-
Doorn, S.K.1
Zheng, L.2
O'Connell, M.J.3
Zhu, Y.4
Huang, S.5
Liu, J.6
-
21
-
-
70349116933
-
-
The E11,22 energies measured here for suspended nanotube segments in the nitrogen or argon atmosphere (see experiments) corresponded to those for nanotubes in vacuum (Ref.).
-
The E11,22 energies measured here for suspended nanotube segments in the nitrogen or argon atmosphere (see experiments) corresponded to those for nanotubes in vacuum (Ref.).
-
-
-
-
22
-
-
0031504972
-
-
10.1143/JPSJ.66.1066
-
T. Ando, J. Phys. Soc. Jpn. 66, 1066 (1997). 10.1143/JPSJ.66.1066
-
(1997)
J. Phys. Soc. Jpn.
, vol.66
, pp. 1066
-
-
Ando, T.1
-
23
-
-
0038160336
-
-
10.1103/PhysRevLett.90.207401
-
C. L. Kane and E. J. Mele, Phys. Rev. Lett. 90, 207401 (2003). 10.1103/PhysRevLett.90.207401
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 207401
-
-
Kane, C.L.1
Mele, E.J.2
-
24
-
-
33745343246
-
-
10.1103/PhysRevB.73.235427
-
Y. Ohno, S. Iwasaki, Y. Murakami, S. Kishimoto, S. Maruyama, and T. Mizutani, Phys. Rev. B 73, 235427 (2006). 10.1103/PhysRevB.73.235427
-
(2006)
Phys. Rev. B
, vol.73
, pp. 235427
-
-
Ohno, Y.1
Iwasaki, S.2
Murakami, Y.3
Kishimoto, S.4
Maruyama, S.5
Mizutani, T.6
-
25
-
-
56149086412
-
-
10.1021/nl801074j
-
S. Chiashi, S. Watanabe, T. Hanashima, and Y. Homma, Nano Lett. 8, 3097 (2008). 10.1021/nl801074j
-
(2008)
Nano Lett.
, vol.8
, pp. 3097
-
-
Chiashi, S.1
Watanabe, S.2
Hanashima, T.3
Homma, Y.4
-
26
-
-
70349102085
-
-
p= (n-m) mod3=0,1,2 Statistically, two thirds of nanotubes are semiconducting (p=1,2) and one third (p=0) is metallic.
-
p= (n-m) mod3=0,1,2 Statistically, two thirds of nanotubes are semiconducting (p=1,2) and one third (p=0) is metallic.
-
-
-
-
27
-
-
0034229826
-
-
10.1103/PhysRevLett.85.154
-
L. Yang and J. Han, Phys. Rev. Lett. 85, 154 (2000). 10.1103/PhysRevLett. 85.154
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 154
-
-
Yang, L.1
Han, J.2
-
28
-
-
0000854093
-
-
10.1103/PhysRevB.60.13874
-
L. Yang, M. P. Anantram, J. Han, and J. P. Lu, Phys. Rev. B 60, 13874 (1999). 10.1103/PhysRevB.60.13874
-
(1999)
Phys. Rev. B
, vol.60
, pp. 13874
-
-
Yang, L.1
Anantram, M.P.2
Han, J.3
Lu, J.P.4
-
30
-
-
10844293665
-
-
10.1021/nl048630c
-
K. Arnold, S. Lebedkin, O. Kiowski, F. Hennrich, and M. M. Kappes, Nano Lett. 4, 2349 (2004). 10.1021/nl048630c
-
(2004)
Nano Lett.
, vol.4
, pp. 2349
-
-
Arnold, K.1
Lebedkin, S.2
Kiowski, O.3
Hennrich, F.4
Kappes, M.M.5
-
32
-
-
43149095147
-
-
10.1021/nl072861c
-
T. K. Leeuw, D. A. Tsyboulski, P. N. Nikolaev, S. M. Bachilo, S. Arepalli, and R. B. Weisman, Nano Lett. 8, 826 (2008). 10.1021/nl072861c
-
(2008)
Nano Lett.
, vol.8
, pp. 826
-
-
Leeuw, T.K.1
Tsyboulski, D.A.2
Nikolaev, P.N.3
Bachilo, S.M.4
Arepalli, S.5
Weisman, R.B.6
-
33
-
-
70349094494
-
-
The increase in emission from the stretched segment of SWNT 1 between positions -30 and -105 μm in Fig. 5 is due to a Raman overtone, which overlaps with the strain-shifted E11 - E22 emission-excitation PL peak.
-
The increase in emission from the stretched segment of SWNT 1 between positions -30 and -105 μm in Fig. 5 is due to a Raman overtone, which overlaps with the strain-shifted E11 - E22 emission-excitation PL peak.
-
-
-
-
34
-
-
70349139266
-
-
The conventional (n,m) notation with positive indices n, m, and n≥m corresponds to right-handed SWNTs (following the usual definition for helical structures). Their left-handed counterparts can be indexed, for instance, as (m,n) nanotubes.
-
The conventional (n,m) notation with positive indices n, m, and n≥m corresponds to right-handed SWNTs (following the usual definition for helical structures). Their left-handed counterparts can be indexed, for instance, as (m,n) nanotubes.
-
-
-
-
35
-
-
33746063216
-
-
10.1021/ja062095w
-
G. Dukovic, M. Balaz, P. Doak, N. D. Berova, M. Zheng, R. S. Mclean, and L. E. Brus, J. Am. Chem. Soc. 128, 9004 (2006). 10.1021/ja062095w
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 9004
-
-
Dukovic, G.1
Balaz, M.2
Doak, P.3
Berova, N.D.4
Zheng, M.5
McLean, R.S.6
Brus, L.E.7
-
36
-
-
70349100433
-
-
Note that axial and torsional strains are coupled in a chiral nanotube. However, axial strain generated by pure torsion and the corresponding E11 and E22 energy shifts are expected to be relatively small (see also Ref.).
-
Note that axial and torsional strains are coupled in a chiral nanotube. However, axial strain generated by pure torsion and the corresponding E11 and E22 energy shifts are expected to be relatively small (see also Ref.).
-
-
-
|