-
3
-
-
33744603046
-
-
R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).
-
(1992)
Appl. Phys. Lett.
, vol.60
, pp. 2204
-
-
Saito, R.1
Fujita, M.2
Dresselhaus, G.3
Dresselhaus, M.S.4
-
7
-
-
2642660458
-
-
J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature (London) 391, 59 (1998);
-
(1998)
Nature (London)
, vol.391
, pp. 59
-
-
Wildoer, J.W.G.1
Venema, L.C.2
Rinzler, A.G.3
Smalley, R.E.4
Dekker, C.5
-
8
-
-
0031912473
-
-
Nature (London)T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, 391, 62 (1998).
-
(1998)
Nature (London)
, vol.391
, pp. 62
-
-
Odom, T.W.1
Huang, J.L.2
Kim, P.3
Lieber, C.M.4
-
9
-
-
0031551609
-
-
L. C. Venema, J. W. G. Wildoer, H. L. J. T. Tuinstra, C. Dekker, A. G. Rinzler, and R. E. Smalley, Appl. Phys. Lett. 71, 2629 (1997).
-
(1997)
Appl. Phys. Lett.
, vol.71
, pp. 2629
-
-
Venema, L.C.1
Wildoer, J.W.G.2
Tuinstra, H.L.J.T.3
Dekker, C.4
Rinzler, A.G.5
Smalley, R.E.6
-
10
-
-
0000031946
-
-
C. Joachim, J. K. Gimzewski, R. R. Schlittler, and C. Chavy, Phys. Rev. Lett. 74, 2102 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 2102
-
-
Joachim, C.1
Gimzewski, J.K.2
Schlittler, R.R.3
Chavy, C.4
-
12
-
-
0001094910
-
-
D. W. Brenner, J. D. Schall, J. P. Mewkill, D. A. Shenderova, and S. B. Sinnott, Interplanet. Soc. 51, 137 (1998).
-
(1998)
Interplanet. Soc.
, vol.51
, pp. 137
-
-
Brenner, D.W.1
Schall, J.D.2
Mewkill, J.P.3
Shenderova, D.A.4
Sinnott, S.B.5
-
17
-
-
36149007340
-
-
) to the case of a graphene sheet with three bonds with unequal bond lengths and hopping parameters.
-
This expression can be obtained by extending the treatment of P. R. Wallace, Phys. Rev. 71, 622 (1947) to the case of a graphene sheet with three bonds with unequal bond lengths and hopping parameters.
-
(1947)
Phys. Rev.
, vol.71
, pp. 622
-
-
Wallace, P.R.1
-
19
-
-
85037914604
-
-
This discussion applies to the tensile case also, where (Formula presented) and (Formula presented) should be set equal to zero. At the end of the last paragraph we however did not use this argument to generate the eigenspectrum because the 1D unit cell length simply scales as (Formula presented) The essence of this discussion is that if the change in hopping parameters is accounted for, then the eigenspectrum can be calculated by assuming that the geometry has not changed.
-
This discussion applies to the tensile case also, where (Formula presented) and (Formula presented) should be set equal to zero. At the end of the last paragraph we however did not use this argument to generate the eigenspectrum because the 1D unit cell length simply scales as (Formula presented) The essence of this discussion is that if the change in hopping parameters is accounted for, then the eigenspectrum can be calculated by assuming that the geometry has not changed.
-
-
-
-
20
-
-
85037877566
-
-
Defined in terms of (Formula presented) i.e., (Formula presented) equal to 0, 1, and 2 corresponds to 0, 1, and (Formula presented) respectively, in the notation used.
-
Defined in terms of (Formula presented) i.e., (Formula presented) equal to 0, 1, and 2 corresponds to 0, 1, and (Formula presented) respectively, in the notation used.
-
-
-
-
21
-
-
17044428853
-
-
D. A. Walters, L. E. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, and R. E. Smalley, Bull. Am. Phys. Soc. 44 (1), 1818 (1999);
-
(1999)
Bull. Am. Phys. Soc.
, vol.44
, Issue.1
, pp. 1818
-
-
Walters, D.A.1
Ericson, L.E.2
Casavant, M.J.3
Liu, J.4
Colbert, D.T.5
Smalley, R.E.6
-
22
-
-
17044415593
-
-
Bull. Am. Phys. Soc.T. Rueckes, C. L. Cheung, J. W. Hutchinson, and C. M. Lieber, 44 (1), 1818 (1999).
-
(1999)
Bull. Am. Phys. Soc.
, vol.44
, Issue.1
, pp. 1818
-
-
Rueckes, T.1
Cheung, C.L.2
Hutchinson, J.W.3
Lieber, C.M.4
-
25
-
-
85037896935
-
-
(Formula presented) can be replaced by (Formula presented) in this expression.
-
(Formula presented) can be replaced by (Formula presented) in this expression.
-
-
-
|