메뉴 건너뛰기




Volumn , Issue , 2006, Pages 677-682

Application of evolutionary programming techniques in geotechnical engineering

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; COMPUTER PROGRAMMING; NEURAL NETWORKS; NUMERICAL METHODS; PATTERN RECOGNITION;

EID: 56149086346     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1201/9781439833766.ch98     Document Type: Conference Paper
Times cited : (2)

References (27)
  • 1
    • 0032430468 scopus 로고    scopus 로고
    • General regression neural networks for driven piles in cohesionless soils
    • Abu-Kiefa, M.A. 1998. General regression neural networks for driven piles in cohesionless soils. J. Geotech. & Geoenv. Engrg. 124(12): 1177-1185.
    • (1998) J. Geotech. & Geoenv. Engrg , vol.124 , Issue.12 , pp. 1177-1185
    • Abu-Kiefa, M.A.1
  • 2
    • 0141573109 scopus 로고    scopus 로고
    • Evaluation of liquefaction potential using neural-networks and CPT results
    • Baziar, M.H. & Nilipour, N. 2003. Evaluation of liquefaction potential using neural-networks and CPT results. J. Soil Dyn. Earthquake Engng. 23: 631-636.
    • (2003) J. Soil Dyn. Earthquake Engng , vol.23 , pp. 631-636
    • Baziar, M.H.1    Nilipour, N.2
  • 4
    • 0028977232 scopus 로고
    • Neural network: An alternative to pile driving formulas
    • Chan, W.T. Chow, Y.K. & Liu, L.F. 1995. Neural network: An alternative to pile driving formulas. J. Computers & Geotechnics, 17: 135-156.
    • (1995) J. Computers & Geotechnics , vol.17 , pp. 135-156
    • Chan, W.T.1    Chow, Y.K.2    Liu, L.F.3
  • 5
    • 0028413247 scopus 로고
    • Neural networks in civil engineering II principles and understanding
    • Flood, I. & Kartam, N. 1994. Neural networks in civil engineering II principles and understanding. J. Computing in Civil Engrg., 8(2): 149-162.
    • (1994) J. Computing in Civil Engrg , vol.8 , Issue.2 , pp. 149-162
    • Flood, I.1    Kartam, N.2
  • 6
    • 0742301690 scopus 로고    scopus 로고
    • Some techniques to avoid overfitting of artificial neural networks
    • Cardiff, 1-5 July, London: IWA publishing
    • Giustolisi, O. 2002. Some techniques to avoid overfitting of artificial neural networks. Hydroinfiormatics; Proc. 5th intern. conf., Cardiff, 1-5 July 2002. London: IWA publishing, 2: 1465-1477.
    • (2002) Hydroinfiormatics; Proc. 5th intern. conf , vol.2 , pp. 1465-1477
    • Giustolisi, O.1
  • 7
    • 33744791952 scopus 로고    scopus 로고
    • A symbolic data-driven technique based on evolutionary polynomial regression
    • in press
    • Giustolisi, O. & Savic, D.A. 2006. A symbolic data-driven technique based on evolutionary polynomial regression. J. Hydroinfiormatics 8(3): (in press).
    • (2006) J. Hydroinfiormatics , vol.8 , Issue.3
    • Giustolisi, O.1    Savic, D.A.2
  • 8
    • 0028549824 scopus 로고
    • Nonlinear modelling in geotechnical engineering using neural networks
    • Goh, A.T.C. 1994. Nonlinear modelling in geotechnical engineering using neural networks. Australian Civil Engrg. Trans. 36(4): 293-297.
    • (1994) Australian Civil Engrg. Trans , vol.36 , Issue.4 , pp. 293-297
    • Goh, A.T.C.1
  • 9
    • 0029223565 scopus 로고
    • Back-propagation neural networks for modeling complex systems
    • Goh, A.T.C. 1995a. Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engrg. 9: 143-151.
    • (1995) Artificial Intelligence in Engrg , vol.9 , pp. 143-151
    • Goh, A.T.C.1
  • 10
    • 0029415865 scopus 로고
    • Empirical design in geotechnics using neural networks
    • Goh, A.T.C. 1995b. Empirical design in geotechnics using neural networks. Geotechnique 45(4): 709-714.
    • (1995) Geotechnique , vol.45 , Issue.4 , pp. 709-714
    • Goh, A.T.C.1
  • 11
    • 0030414004 scopus 로고    scopus 로고
    • Pile driving records reanalyzed using neural networks
    • Goh, A.T.C. 1996. Pile driving records reanalyzed using neural networks. J. Geotech. Engrg. 122(6): 492-495.
    • (1996) J. Geotech. Engrg , vol.122 , Issue.6 , pp. 492-495
    • Goh, A.T.C.1
  • 13
    • 0033131832 scopus 로고    scopus 로고
    • CPT-based liquefaction evaluation using artificial neural networks
    • Juang, C.H. & Chen, C.J. 1999. CPT-based liquefaction evaluation using artificial neural networks. Computer-Aided Civil and Infrastructure Engng. 14: 221-229.
    • (1999) Computer-Aided Civil and Infrastructure Engng , vol.14 , pp. 221-229
    • Juang, C.H.1    Chen, C.J.2
  • 14
    • 0035521718 scopus 로고    scopus 로고
    • Three-dimensional site characterisation: Neural network approach
    • Juang, C.H., Jiang, T. & Christopher, R.A. 2001. Three-dimensional site characterisation: neural network approach. Geotechnique 51(9): 799-809.
    • (2001) Geotechnique , vol.51 , Issue.9 , pp. 799-809
    • Juang, C.H.1    Jiang, T.2    Christopher, R.A.3
  • 15
    • 0030472893 scopus 로고    scopus 로고
    • Prediction of pile bearing capacity using artificial neural networks
    • Lee, I.M. & Lee, J.H. 1996. Prediction of pile bearing capacity using artificial neural networks. Computers & Geotechnics 18(3): 189-200.
    • (1996) Computers & Geotechnics , vol.18 , Issue.3 , pp. 189-200
    • Lee, I.M.1    Lee, J.H.2
  • 17
    • 0742322765 scopus 로고    scopus 로고
    • Artificial neural networks and grey systems for the prediction of slope stability
    • Lu, P. & Rosenbaum, M.S. 2003. Artificial neural networks and grey systems for the prediction of slope stability. Natural Hazards 30(3): 383-395.
    • (2003) Natural Hazards , vol.30 , Issue.3 , pp. 383-395
    • Lu, P.1    Rosenbaum, M.S.2
  • 19
    • 0005383183 scopus 로고
    • Prediction of settlements from evaluated settlement observations for sand
    • Moscow
    • Schultze, E. & Sherif, G. 1973. Prediction of settlements from evaluated settlement observations for sand. Soil Mech. & Foundation Engrg.; Proc. 8th intern. conf., Moscow, 1(3): 225-230.
    • (1973) Soil Mech. & Foundation Engrg.; Proc. 8th intern. conf , vol.1 , Issue.3 , pp. 225-230
    • Schultze, E.1    Sherif, G.2
  • 20
    • 19944393836 scopus 로고    scopus 로고
    • Artificial neural network-based settlement prediction formula for shallow foundations on granular soils
    • Shahin, M.A. Jaksa, M.B. & Maier, H.R. 2002a. Artificial neural network-based settlement prediction formula for shallow foundations on granular soils. Australian Geomechanics 37(4): 45-52.
    • (2002) Australian Geomechanics , vol.37 , Issue.4 , pp. 45-52
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 21
    • 19944364218 scopus 로고    scopus 로고
    • Neural network based stochastic design charts for settlement prediction
    • Shahin, M.A. Jaksa, M.B. & Maier, H.R. 2005. Neural network based stochastic design charts for settlement prediction. Canadian Geotech. J. 42(1): 110-120.
    • (2005) Canadian Geotech. J , vol.42 , Issue.1 , pp. 110-120
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 22
    • 0036712318 scopus 로고    scopus 로고
    • Predicting settlements of shallow foundations using artificial neural networks
    • Shahin, M.A. Maier, H.R. & Jaksa, M.B. 2002b. Predicting settlements of shallow foundations using artificial neural networks. J. Geotech. Geoenv. Engrg. 128(9): 785-793.
    • (2002) J. Geotech. Geoenv. Engrg , vol.128 , Issue.9 , pp. 785-793
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 23
    • 56149084300 scopus 로고
    • Neural and neurofuzzy techniques applied to modelling settlement of shallow foundations on granular soils
    • D.A. Post ed, congress, Townsville, Queensland, 2003a
    • Shahin, M.A. Maier, H.R. & Jaksa, M.B. 2003a. Neural and neurofuzzy techniques applied to modelling settlement of shallow foundations on granular soils. In D.A. Post (ed.), Modeling and simulation, MODSIM; Proc. intern. congress, Townsville, Queensland, 4: 1886-1891.
    • (1886) Modeling and simulation, MODSIM; Proc. intern , vol.4
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 24
    • 0242468288 scopus 로고    scopus 로고
    • Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models
    • Shahin, M.A. Maier, H.R. & Jaksa, M.B. 2003b. Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models. Computers & Geotechnics 30(8): 637-647.
    • (2003) Computers & Geotechnics , vol.30 , Issue.8 , pp. 637-647
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 27
    • 0032194440 scopus 로고    scopus 로고
    • Modeling of soil behavior with a recurrent neural network
    • Zhu, J.H. Zaman, M.M. & Anderson, S.A. 1998a. Modeling of soil behavior with a recurrent neural network. Canadian Geotech. J. 35(5): 858-872.
    • (1998) Canadian Geotech. J , vol.35 , Issue.5 , pp. 858-872
    • Zhu, J.H.1    Zaman, M.M.2    Anderson, S.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.