메뉴 건너뛰기




Volumn 35, Issue 10, 2009, Pages 2084-2094

TEXTNN-A MATLAB program for textural classification using neural networks

Author keywords

Feed forward neural networks; RADAR images; Semivariograms; Supervised classification; Textural images

Indexed keywords

BEST MODEL; CROSS VALIDATION; END USERS; FEATURE VECTORS; FEEDFORWARD BACKPROPAGATION; FREQUENCY DOMAINS; GEOLOGIC MAPPING; GEOSCIENCES; KAPPA COEFFICIENT; MATLAB CODE; MATLAB PROGRAM; MEAN SQUARED ERROR; MOVING WINDOW; NEURAL NETWORK MODEL; OMNI-DIRECTIONAL; PRE-DEFINED CLASS; PREDICTIVE POWER; RADAR IMAGES; RADARSAT; SAR IMAGERY; SEMIVARIANCES; SEMIVARIOGRAMS; SPATIAL DOMAINS; SPLIT-SAMPLE; STANDARD DEVIATION; SUPERVISED CLASSIFICATION; SYNTHETIC IMAGES; TEST SETS; TEXTURAL CLASSIFICATION; TEXTURAL IMAGES; TEXTURAL INFORMATION; TRAINING PHASE; TRAINING SETS; VARIOGRAMS;

EID: 70249114053     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2008.10.009     Document Type: Article
Times cited : (15)

References (34)
  • 5
    • 0030440530 scopus 로고    scopus 로고
    • Spectral and textural classification of single and multiple band digital images
    • Carr J.R. Spectral and textural classification of single and multiple band digital images. Computers & Geosciences 22 8 (1996) 849-865
    • (1996) Computers & Geosciences , vol.22 , Issue.8 , pp. 849-865
    • Carr, J.R.1
  • 6
    • 0032208030 scopus 로고    scopus 로고
    • The semivariogram in comparison to the co-occurrence matrix for classification of image texture
    • Carr J.R., and Miranda F.P. The semivariogram in comparison to the co-occurrence matrix for classification of image texture. IEEE Transactions on Geoscience and Remote Sensing 36 (1998) 1945-1952
    • (1998) IEEE Transactions on Geoscience and Remote Sensing , vol.36 , pp. 1945-1952
    • Carr, J.R.1    Miranda, F.P.2
  • 7
    • 17344387949 scopus 로고    scopus 로고
    • Computing geostatistical image texture for remotely sensed data classification
    • Chica-Olmo M., and Arbarca-Hérnandez F. Computing geostatistical image texture for remotely sensed data classification. Computers & Geosciences 26 4 (2000) 373-383
    • (2000) Computers & Geosciences , vol.26 , Issue.4 , pp. 373-383
    • Chica-Olmo, M.1    Arbarca-Hérnandez, F.2
  • 8
    • 0141905889 scopus 로고    scopus 로고
    • Texture analysis and classification of ERS SAR images for map updating of urban areas in the Netherlands
    • Dekker R.J. Texture analysis and classification of ERS SAR images for map updating of urban areas in the Netherlands. IEEE Transactions on Geoscience and Remote Sensing 41 9 (2003) 1950-1958
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41 , Issue.9 , pp. 1950-1958
    • Dekker, R.J.1
  • 9
    • 70249142979 scopus 로고    scopus 로고
    • Demuth, H., Beale, M., Hagan, M., 2008. Neural Network Toolbox™ 6. User's Guide. The MathWorks™, Natick, MA, 907p.
    • Demuth, H., Beale, M., Hagan, M., 2008. Neural Network Toolbox™ 6. User's Guide. The MathWorks™, Natick, MA, 907p.
  • 10
    • 0000866729 scopus 로고
    • On the compensation for change agreement in image classification accuracy assessment
    • Foody G.M. On the compensation for change agreement in image classification accuracy assessment. Photogrammetric Engineering and Remote Sensing 6 10 (1992) 1459-1460
    • (1992) Photogrammetric Engineering and Remote Sensing , vol.6 , Issue.10 , pp. 1459-1460
    • Foody, G.M.1
  • 11
    • 84995363369 scopus 로고    scopus 로고
    • Texture model regression for effective feature discrimination: application to seismic facies visualization and interpretation
    • Gao D. Texture model regression for effective feature discrimination: application to seismic facies visualization and interpretation. Geophysics 69 (2004) 958-967
    • (2004) Geophysics , vol.69 , pp. 958-967
    • Gao, D.1
  • 12
    • 41449089115 scopus 로고    scopus 로고
    • Application of seismic texture model regression to seismic facies characterization and interpretation
    • Gao D. Application of seismic texture model regression to seismic facies characterization and interpretation. The Leading Edge 27 (2008) 394-397
    • (2008) The Leading Edge , vol.27 , pp. 394-397
    • Gao, D.1
  • 16
    • 0001290841 scopus 로고    scopus 로고
    • Glossary of terms: editorial for the special issue on applications of machine learning and the knowledge discovery process
    • Kohavi R., and Provost F. Glossary of terms: editorial for the special issue on applications of machine learning and the knowledge discovery process. Machine Learning 30 (1998) 217-274
    • (1998) Machine Learning , vol.30 , pp. 217-274
    • Kohavi, R.1    Provost, F.2
  • 17
    • 0035051048 scopus 로고    scopus 로고
    • Land-use classification with textural analysis and the aggregation technique using multi-temporal JERS-1 L-band SAR images
    • Kurosu T., Yokoyama S., Fujita M., and Chiba K. Land-use classification with textural analysis and the aggregation technique using multi-temporal JERS-1 L-band SAR images. International Journal of Remote Sensing 22 4 (2001) 595-613
    • (2001) International Journal of Remote Sensing , vol.22 , Issue.4 , pp. 595-613
    • Kurosu, T.1    Yokoyama, S.2    Fujita, M.3    Chiba, K.4
  • 18
    • 54249107221 scopus 로고    scopus 로고
    • Lithological discrimination of Altun area in northwest China using Landsat TM data and geostatistical textural information
    • Li P., Li Z., and Moon W.M. Lithological discrimination of Altun area in northwest China using Landsat TM data and geostatistical textural information. Geosciences Journal 5 4 (2001) 293-300
    • (2001) Geosciences Journal , vol.5 , Issue.4 , pp. 293-300
    • Li, P.1    Li, Z.2    Moon, W.M.3
  • 20
    • 0030435154 scopus 로고    scopus 로고
    • Fast variogram computation with FFT
    • Marcotte D. Fast variogram computation with FFT. Computers & Geosciences 22 10 (1996) 1175-1186
    • (1996) Computers & Geosciences , vol.22 , Issue.10 , pp. 1175-1186
    • Marcotte, D.1
  • 21
    • 18144395392 scopus 로고    scopus 로고
    • Textural identification of carbonate rocks by image processing and neural network: methodology proposal and examples
    • Marmo R., Amodio S., Tagliaferri R., Ferreri V., and Longo G. Textural identification of carbonate rocks by image processing and neural network: methodology proposal and examples. Computers & Geosciences 31 5 (2005) 649-659
    • (2005) Computers & Geosciences , vol.31 , Issue.5 , pp. 649-659
    • Marmo, R.1    Amodio, S.2    Tagliaferri, R.3    Ferreri, V.4    Longo, G.5
  • 22
    • 0032004680 scopus 로고    scopus 로고
    • Semivariogram textural classification of JERS-1 (Fuyo-1) SAR data obtained over a flooded area of the Amazon rainforest
    • Miranda F.P., Fonseca L.E.N., and Carr J.R. Semivariogram textural classification of JERS-1 (Fuyo-1) SAR data obtained over a flooded area of the Amazon rainforest. International Journal of Remote Sensing 19 (1998) 549-556
    • (1998) International Journal of Remote Sensing , vol.19 , pp. 549-556
    • Miranda, F.P.1    Fonseca, L.E.N.2    Carr, J.R.3
  • 23
    • 4944242355 scopus 로고    scopus 로고
    • Analysis of RADARSAT-1 data for offshore monitoring activities in the Cantarell Complex, Gulf of Mexico, using the unsupervised semivariogram textural classifier (USTC)
    • Miranda F.P., Marmol A.M.Q., Pedroso E.C., Beisl C.H., Welgan P., and Morales L.M. Analysis of RADARSAT-1 data for offshore monitoring activities in the Cantarell Complex, Gulf of Mexico, using the unsupervised semivariogram textural classifier (USTC). Canadian Journal of Remote Sensing 30 3 (2004) 424-436
    • (2004) Canadian Journal of Remote Sensing , vol.30 , Issue.3 , pp. 424-436
    • Miranda, F.P.1    Marmol, A.M.Q.2    Pedroso, E.C.3    Beisl, C.H.4    Welgan, P.5    Morales, L.M.6
  • 24
    • 33751047458 scopus 로고    scopus 로고
    • Texture-based classification of ground-penetrating radar images
    • Moysey S., Knight R.J., and Jol H.M. Texture-based classification of ground-penetrating radar images. Geophysics 71 6 (2006) K111-K118
    • (2006) Geophysics , vol.71 , Issue.6
    • Moysey, S.1    Knight, R.J.2    Jol, H.M.3
  • 25
    • 0002118069 scopus 로고
    • Performance of a high-resolution polarimetric SAR automatic target recognition system
    • Novak L.M., Owirka G.J., and Netishen C.M. Performance of a high-resolution polarimetric SAR automatic target recognition system. The Lincoln Laboratory Journal 6 1 (1993) 11-23
    • (1993) The Lincoln Laboratory Journal , vol.6 , Issue.1 , pp. 11-23
    • Novak, L.M.1    Owirka, G.J.2    Netishen, C.M.3
  • 26
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
    • Washington, DC, USA, pp
    • Nguyen, D., Widrow. B., 1990. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: Proceedings of the International Joint Conference on Neural Networks 3, Washington, DC, USA, pp. 21-26.
    • (1990) Proceedings of the International Joint Conference on Neural Networks , vol.3 , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 27
    • 0004399787 scopus 로고
    • Cross-validation estimates IMSE
    • Cowan J.D., Tesauro G., and Alspector J. (Eds), Morgan Kaufman, San Mateo, CA, USA
    • Plutowski M., Sakata S., and White H. Cross-validation estimates IMSE. In: Cowan J.D., Tesauro G., and Alspector J. (Eds). Advances in Neural Information Processing Systems 6 (1994), Morgan Kaufman, San Mateo, CA, USA 391-398
    • (1994) Advances in Neural Information Processing Systems 6 , pp. 391-398
    • Plutowski, M.1    Sakata, S.2    White, H.3
  • 28
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart D.E., and Mclelland J.L. (Eds), MIT Press, Cambridge, MA, USA
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning internal representations by error propagation. In: Rumelhart D.E., and Mclelland J.L. (Eds). Parallel Distributed Processing 1 (1986), MIT Press, Cambridge, MA, USA 318-362
    • (1986) Parallel Distributed Processing 1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 33
    • 0034233049 scopus 로고    scopus 로고
    • A comparison of the correlation structure in GPR images of deltaic and barrier-spit depositional environments
    • Tercier P., Knight R.J., and Jol H.M. A comparison of the correlation structure in GPR images of deltaic and barrier-spit depositional environments. Geophysics 65 (2000) 1142-1153
    • (2000) Geophysics , vol.65 , pp. 1142-1153
    • Tercier, P.1    Knight, R.J.2    Jol, H.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.