-
5
-
-
13844313866
-
-
10.1016/j.pmatsci.2004.10.001
-
K. Otsuka and X. Ren, Prog. Mater. Sci. 50, 511 (2005). 10.1016/j.pmatsci.2004.10.001
-
(2005)
Prog. Mater. Sci.
, vol.50
, pp. 511
-
-
Otsuka, K.1
Ren, X.2
-
7
-
-
42549099961
-
-
10.1103/PhysRevLett.100.165707
-
P. Lloveras, T. Castán, M. Porta, A. Planes, and A. Saxena, Phys. Rev. Lett. 100, 165707 (2008). 10.1103/PhysRevLett.100.165707
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 165707
-
-
Lloveras, P.1
Castán, T.2
Porta, M.3
Planes, A.4
Saxena, A.5
-
8
-
-
70249139567
-
-
Values near the transformation temperature.
-
Values near the transformation temperature.
-
-
-
-
11
-
-
35348831743
-
-
10.1103/PhysRevB.76.132201
-
Y. Wang, X. Ren, K. Otsuka, and A. Saxena, Phys. Rev. B 76, 132201 (2007). 10.1103/PhysRevB.76.132201
-
(2007)
Phys. Rev. B
, vol.76
, pp. 132201
-
-
Wang, Y.1
Ren, X.2
Otsuka, K.3
Saxena, A.4
-
12
-
-
0000158515
-
-
Note that we are using the same notation as used in magnetism in order to emphasize the analogy between both problems. The characterization of the magnetic ZFC/FC experiments has been, for instance, studied in detail in 10.1103/PhysRevB.19.1633
-
Note that we are using the same notation as used in magnetism in order to emphasize the analogy between both problems. The characterization of the magnetic ZFC/FC experiments has been, for instance, studied in detail in S. Nagata, P. H. Keesom, and H. R. Harrison, Phys. Rev. B 19, 1633 (1979). 10.1103/PhysRevB.19.1633
-
(1979)
Phys. Rev. B
, vol.19
, pp. 1633
-
-
Nagata, S.1
Keesom, P.H.2
Harrison, H.R.3
-
14
-
-
11744356234
-
-
10.1103/PhysRevLett.80.181
-
B. Martínez and X. Obradors, Ll. Balcells, A. Rouanet, and C. Monty, Phys. Rev. Lett. 80, 181 (1998). 10.1103/PhysRevLett.80.181
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 181
-
-
Martínez, B.1
Obradors, X.2
Balcells, Ll.3
Rouanet, A.4
Monty, C.5
-
15
-
-
0000696354
-
-
10.1103/PhysRevB.46.8013
-
D. Viehland, J. F. Li, S. J. Jang, L. E. Cross, and M. Wuttig, Phys. Rev. B 46, 8013 (1992). 10.1103/PhysRevB.46.8013
-
(1992)
Phys. Rev. B
, vol.46
, pp. 8013
-
-
Viehland, D.1
Li, J.F.2
Jang, S.J.3
Cross, L.E.4
Wuttig, M.5
-
16
-
-
0028424636
-
-
10.1088/0953-8984/6/20/008
-
A. M. Bratkovsky, S. C. Marais, V. Heine, and E. K. H. Salje, J. Phys.: Condens. Matter 6, 3679 (1994). 10.1088/0953-8984/6/20/008
-
(1994)
J. Phys.: Condens. Matter
, vol.6
, pp. 3679
-
-
Bratkovsky, A.M.1
Marais, S.C.2
Heine, V.3
Salje, E.K.H.4
-
17
-
-
26544474042
-
-
10.1103/PhysRevB.52.803
-
S. Kartha, J. A. Krumhansl, J. P. Sethna, and L. K. Wickham, Phys. Rev. B 52, 803 (1995). 10.1103/PhysRevB.52.803
-
(1995)
Phys. Rev. B
, vol.52
, pp. 803
-
-
Kartha, S.1
Krumhansl, J.A.2
Sethna, J.P.3
Wickham, L.K.4
-
18
-
-
0001640788
-
-
10.1103/PhysRevB.60.R12537
-
S. R. Shenoy, T. Lookman, A. Saxena, and A. R. Bishop, Phys. Rev. B 60, R12537 (1999). 10.1103/PhysRevB.60.R12537
-
(1999)
Phys. Rev. B
, vol.60
, pp. 12537
-
-
Shenoy, S.R.1
Lookman, T.2
Saxena, A.3
Bishop, A.R.4
-
19
-
-
70249119365
-
-
Note also that the harmonic coefficients are directly related to second-order elastic constants: A1 = C11 + C12, A2 = C11 - C12 =2 C′, and A3 =4 C44.
-
Note also that the harmonic coefficients are directly related to second-order elastic constants: A1 = C11 + C12, A2 = C11 - C12 =2 C′, and A3 =4 C44.
-
-
-
-
20
-
-
70249092261
-
-
We have checked that variations in this value do not affect the relevant results presented here.
-
We have checked that variations in this value do not affect the relevant results presented here.
-
-
-
-
21
-
-
70249135349
-
-
In fact, ZFC/FC simulations are carried out in a model with periodic boundary conditions. This gives rise to a global minimum consisting of a monovariant state. However, pure relaxational dynamics takes our system to twinned metastable states but with no characteristic length. In real martensites surface effects make the global minimum to consist of an equal-length twinning (i.e., with a characteristic length) in order to minimize the surface and the total energy. This is not expected to modify the relevant results concerning ZFC/FC simulations. However, in order to obtain this characteristic length of twins, some other simulations with no periodic boundary conditions but with austenitic boundary conditions have been carried out.
-
In fact, ZFC/FC simulations are carried out in a model with periodic boundary conditions. This gives rise to a global minimum consisting of a monovariant state. However, pure relaxational dynamics takes our system to twinned metastable states but with no characteristic length. In real martensites surface effects make the global minimum to consist of an equal-length twinning (i.e., with a characteristic length) in order to minimize the surface and the total energy. This is not expected to modify the relevant results concerning ZFC/FC simulations. However, in order to obtain this characteristic length of twins, some other simulations with no periodic boundary conditions but with austenitic boundary conditions have been carried out.
-
-
-
-
23
-
-
70249141344
-
-
X. Ren (private communication)
-
-
-
Ren, X.1
-
24
-
-
44649107587
-
-
see also, 10.1016/j.actamat.2008.02.032
-
see also, Y. Wang. X. Ren. K. Otsuka, and A. Saxena, Acta Mater. 56, 2885 (2008). 10.1016/j.actamat.2008.02.032
-
(2008)
Acta Mater.
, vol.56
, pp. 2885
-
-
Wang, Y.1
Ren, X.2
Otsuka, K.3
Saxena, A.4
|