메뉴 건너뛰기




Volumn 80, Issue 3, 2009, Pages

Relativistic Landau quantization for a neutral particle

Author keywords

[No Author keywords available]

Indexed keywords

EIGEN FUNCTION; EIGENVALUES; EXTERNAL ELECTRIC FIELD; LANDAU LEVELS; LANDAU QUANTIZATION; MAGNETIC DIPOLE; NEUTRAL PARTICLES; PERMANENT MAGNETIC DIPOLE; QUANTUM DYNAMICS;

EID: 70249103454     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.80.032106     Document Type: Article
Times cited : (50)

References (44)
  • 1
    • 34250934540 scopus 로고
    • 10.1007/BF01397213
    • L. Landau, Z. Phys. 64, 629 (1930). 10.1007/BF01397213
    • (1930) Z. Phys. , vol.64 , pp. 629
    • Landau, L.1
  • 4
    • 0000210690 scopus 로고
    • 10.1016/0003-4916(87)90098-4
    • A. Comtet, Ann. Phys. (N.Y.) 173, 185 (1987). 10.1016/0003-4916(87)90098- 4
    • (1987) Ann. Phys. (N.Y.) , vol.173 , pp. 185
    • Comtet, A.1
  • 5
    • 0039493244 scopus 로고
    • 10.1016/0003-4916(88)90283-7
    • C. Grosche, Ann. Phys. (N.Y.) 187, 110 (1988). 10.1016/0003-4916(88) 90283-7
    • (1988) Ann. Phys. (N.Y.) , vol.187 , pp. 110
    • Grosche, C.1
  • 6
    • 0000309898 scopus 로고
    • 10.1016/0003-4916(92)90112-Y
    • G. V. Dunne, Ann. Phys. (N.Y.) 215, 233 (1992). 10.1016/0003-4916(92) 90112-Y
    • (1992) Ann. Phys. (N.Y.) , vol.215 , pp. 233
    • Dunne, G.V.1
  • 7
    • 0003414482 scopus 로고
    • edited by R. E. Prange and S. M. Girvin (Springer-Verlag, New York
    • The Quantum Hall Effect, edited by, R. E. Prange, and, S. M. Girvin, (Springer-Verlag, New York, 1990).
    • (1990) The Quantum Hall Effect
  • 8
    • 0005223547 scopus 로고
    • 10.1007/BF01333634
    • I. I. Rabi, Z. Phys. 49, 507 (1928). 10.1007/BF01333634
    • (1928) Z. Phys. , vol.49 , pp. 507
    • Rabi, I.I.1
  • 10
    • 0000607713 scopus 로고
    • 10.1103/PhysRevD.29.2375
    • R. Jackiw, Phys. Rev. D 29, 2375 (1984). 10.1103/PhysRevD.29.2375
    • (1984) Phys. Rev. D , vol.29 , pp. 2375
    • Jackiw, R.1
  • 13
    • 0000783193 scopus 로고
    • 10.1103/PhysRevLett.61.2015
    • F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988). 10.1103/PhysRevLett. 61.2015
    • (1988) Phys. Rev. Lett. , vol.61 , pp. 2015
    • Haldane, F.D.M.1
  • 16
    • 0036150147 scopus 로고    scopus 로고
    • 10.1103/PhysRevA.65.013607
    • M. Ericsson and E. Sjöqvist, Phys. Rev. A 65, 013607 (2001). 10.1103/PhysRevA.65.013607
    • (2001) Phys. Rev. A , vol.65 , pp. 013607
    • Ericsson, M.1    Sjöqvist, E.2
  • 18
    • 33748067017 scopus 로고
    • 10.1103/PhysRev.115.485
    • Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). 10.1103/PhysRev.115. 485
    • (1959) Phys. Rev. , vol.115 , pp. 485
    • Aharonov, Y.1    Bohm, D.2
  • 19
    • 0001421872 scopus 로고
    • 10.1103/PhysRevA.47.3424
    • X. G. He and B. H. J. McKellar, Phys. Rev. A 47, 3424 (1993). 10.1103/PhysRevA.47.3424
    • (1993) Phys. Rev. A , vol.47 , pp. 3424
    • He, X.G.1    McKellar, B.H.J.2
  • 20
    • 4043121357 scopus 로고
    • 10.1103/PhysRevLett.72.5
    • M. Wilkens, Phys. Rev. Lett. 72, 5 (1994). 10.1103/PhysRevLett.72.5
    • (1994) Phys. Rev. Lett. , vol.72 , pp. 5
    • Wilkens, M.1
  • 23
    • 4043167381 scopus 로고
    • 10.1103/PhysRevLett.75.2071
    • H. Wei, R. Han, and X. Wei, Phys. Rev. Lett. 75, 2071 (1995). 10.1103/PhysRevLett.75.2071
    • (1995) Phys. Rev. Lett. , vol.75 , pp. 2071
    • Wei, H.1    Han, R.2    Wei, X.3
  • 26
  • 29
    • 27744534165 scopus 로고    scopus 로고
    • 10.1038/nature04233
    • K. S. Novoselov, Nature (London) 438, 197 (2005). 10.1038/nature04233
    • (2005) Nature (London) , vol.438 , pp. 197
    • Novoselov, K.S.1
  • 30
    • 33644674176 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.96.086805
    • E. McCann and V. I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006). 10.1103/PhysRevLett.96.086805
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 086805
    • McCann, E.1    Fal'Ko, V.I.2
  • 33
    • 34547298111 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.98.260402
    • Shi-Liang Zhu, B. Wang, and L.-M. Duan, Phys. Rev. Lett. 98, 260402 (2007). 10.1103/PhysRevLett.98.260402
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 260402
    • Zhu, S.1    Wang, B.2    Duan, L.-M.3
  • 40
    • 34250927825 scopus 로고
    • 10.1007/BF01339714
    • V. Fock, Z. Phys. 57, 261 (1929). 10.1007/BF01339714
    • (1929) Z. Phys. , vol.57 , pp. 261
    • Fock, V.1
  • 42
    • 70249137341 scopus 로고    scopus 로고
    • Note
    • When we use the direct coordinate transformation of Eq. 4 to cylindrical coordinates we obtain the following Dirac equation: i γ0 ∂ψc/∂t + i γ̄ 1 ∂ ψc / ∂ρ + i γ̄ 2 /ρ ∂ ψc / ∂φ + i γ3 ∂ ψc / ∂z -m ψc =0, where γ̄ 0 = γ0, γ̄ 1 =cos φ γ1 + sin φ γ2, γ̄ 2 =-sin φ γ1 + cos φ γ2, and γ̄ 3 = γ3 are space-dependent Dirac matrices in cylindrical coordinates. Clearly, the spinor ψ of Eq. 11 and the spinor ψc are not identical but are connected by following transformation ψ=S ψc with S=exp [i 1 2 φ Σ3], which is a unitary transformation. In this way, we can use the Dirac equation in form 11 with the spinorial connection or make use of the above Dirac equation obtained by a transformation of coordinates where the Dirac matrices are space dependent. The relation between the spinors is a unitary matrix transforming ψ into ψc. Notice that an observable Ǒ c in Cartesian representation is transformed according to Ǒ c → Ǒ = S-1 Ǒ c S. In this way the energy in both representations is the same due to the fact that the unitary transformations are time independent.
  • 43
    • 70249134687 scopus 로고    scopus 로고
    • In it is well discussed that the solution of the second-order equation, originated from the Dirac equation, includes redundant solutions which do not satisfy the original first-order equation. The appropriate choice of solutions requires a specific procedure. The customary procedure is that, if φ is solution of a second-order equation, the correct solution of the first-order equation is ψ= [i γμ ∂μ -i γi Ai AC +m] φ. If we multiply this equation by [i γμ ∂μ -i γi Ai AC - m], we find that the right-hand side vanishes if φ satisfies Dirac equation 7.
    • In it is well discussed that the solution of the second-order equation, originated from the Dirac equation, includes redundant solutions which do not satisfy the original first-order equation. The appropriate choice of solutions requires a specific procedure. The customary procedure is that, if φ is solution of a second-order equation, the correct solution of the first-order equation is ψ= [i γμ ∂μ -i γi Ai AC +m] φ. If we multiply this equation by [i γμ ∂μ -i γi Ai AC - m], we find that the right-hand side vanishes if φ satisfies Dirac equation 7.
  • 44
    • 70249122473 scopus 로고    scopus 로고
    • Due to the choice of Cartesian coordinates in the Landau gauge, the dependence on I does not appear explicitly in expression 46 for the eigenvalues. Notice that if we compare expression 28 46 we can find that the relation between v and n is v = n + l ζ sl / 2 + s ζ s/2.
    • Due to the choice of Cartesian coordinates in the Landau gauge, the dependence on I does not appear explicitly in expression 46 for the eigenvalues. Notice that if we compare expression 28 46 we can find that the relation between v and n is v = n + l ζ sl / 2 + s ζ s/2.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.