-
1
-
-
34250934540
-
-
10.1007/BF01397213
-
L. Landau, Z. Phys. 64, 629 (1930). 10.1007/BF01397213
-
(1930)
Z. Phys.
, vol.64
, pp. 629
-
-
Landau, L.1
-
2
-
-
37649032253
-
-
10.1103/PhysRevLett.87.010402
-
B. Paredes, P. Fedichev, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 010402 (2001). 10.1103/PhysRevLett.87.010402
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 010402
-
-
Paredes, B.1
Fedichev, P.2
Cirac, J.I.3
Zoller, P.4
-
4
-
-
0000210690
-
-
10.1016/0003-4916(87)90098-4
-
A. Comtet, Ann. Phys. (N.Y.) 173, 185 (1987). 10.1016/0003-4916(87)90098- 4
-
(1987)
Ann. Phys. (N.Y.)
, vol.173
, pp. 185
-
-
Comtet, A.1
-
5
-
-
0039493244
-
-
10.1016/0003-4916(88)90283-7
-
C. Grosche, Ann. Phys. (N.Y.) 187, 110 (1988). 10.1016/0003-4916(88) 90283-7
-
(1988)
Ann. Phys. (N.Y.)
, vol.187
, pp. 110
-
-
Grosche, C.1
-
6
-
-
0000309898
-
-
10.1016/0003-4916(92)90112-Y
-
G. V. Dunne, Ann. Phys. (N.Y.) 215, 233 (1992). 10.1016/0003-4916(92) 90112-Y
-
(1992)
Ann. Phys. (N.Y.)
, vol.215
, pp. 233
-
-
Dunne, G.V.1
-
7
-
-
0003414482
-
-
edited by R. E. Prange and S. M. Girvin (Springer-Verlag, New York
-
The Quantum Hall Effect, edited by, R. E. Prange, and, S. M. Girvin, (Springer-Verlag, New York, 1990).
-
(1990)
The Quantum Hall Effect
-
-
-
8
-
-
0005223547
-
-
10.1007/BF01333634
-
I. I. Rabi, Z. Phys. 49, 507 (1928). 10.1007/BF01333634
-
(1928)
Z. Phys.
, vol.49
, pp. 507
-
-
Rabi, I.I.1
-
9
-
-
0003864354
-
-
2nd ed. (Pergamon, New York
-
V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd ed. (Pergamon, New York, 1982).
-
(1982)
Quantum Electrodynamics
-
-
Berestetskii, V.B.1
Lifshitz, E.M.2
Pitaevskii, L.P.3
-
10
-
-
0000607713
-
-
10.1103/PhysRevD.29.2375
-
R. Jackiw, Phys. Rev. D 29, 2375 (1984). 10.1103/PhysRevD.29.2375
-
(1984)
Phys. Rev. D
, vol.29
, pp. 2375
-
-
Jackiw, R.1
-
13
-
-
0000783193
-
-
10.1103/PhysRevLett.61.2015
-
F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988). 10.1103/PhysRevLett. 61.2015
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 2015
-
-
Haldane, F.D.M.1
-
16
-
-
0036150147
-
-
10.1103/PhysRevA.65.013607
-
M. Ericsson and E. Sjöqvist, Phys. Rev. A 65, 013607 (2001). 10.1103/PhysRevA.65.013607
-
(2001)
Phys. Rev. A
, vol.65
, pp. 013607
-
-
Ericsson, M.1
Sjöqvist, E.2
-
18
-
-
33748067017
-
-
10.1103/PhysRev.115.485
-
Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). 10.1103/PhysRev.115. 485
-
(1959)
Phys. Rev.
, vol.115
, pp. 485
-
-
Aharonov, Y.1
Bohm, D.2
-
19
-
-
0001421872
-
-
10.1103/PhysRevA.47.3424
-
X. G. He and B. H. J. McKellar, Phys. Rev. A 47, 3424 (1993). 10.1103/PhysRevA.47.3424
-
(1993)
Phys. Rev. A
, vol.47
, pp. 3424
-
-
He, X.G.1
McKellar, B.H.J.2
-
20
-
-
4043121357
-
-
10.1103/PhysRevLett.72.5
-
M. Wilkens, Phys. Rev. Lett. 72, 5 (1994). 10.1103/PhysRevLett.72.5
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 5
-
-
Wilkens, M.1
-
24
-
-
43749089858
-
-
10.1103/PhysRevA.76.012113
-
E. Passos, L. R. Ribeiro, C. Furtado, and J. R. Nascimento, Phys. Rev. A 76, 012113 (2007). 10.1103/PhysRevA.76.012113
-
(2007)
Phys. Rev. A
, vol.76
, pp. 012113
-
-
Passos, E.1
Ribeiro, L.R.2
Furtado, C.3
Nascimento, J.R.4
-
25
-
-
52049121505
-
-
10.1140/epjc/s10052-008-0681-8
-
L. R. Ribeiro, E. Passos, C. Furtado, and J. R. Nascimento, Eur. Phys. J. C 56, 597 (2008). 10.1140/epjc/s10052-008-0681-8
-
(2008)
Eur. Phys. J. C
, vol.56
, pp. 597
-
-
Ribeiro, L.R.1
Passos, E.2
Furtado, C.3
Nascimento, J.R.4
-
29
-
-
27744534165
-
-
10.1038/nature04233
-
K. S. Novoselov, Nature (London) 438, 197 (2005). 10.1038/nature04233
-
(2005)
Nature (London)
, vol.438
, pp. 197
-
-
Novoselov, K.S.1
-
30
-
-
33644674176
-
-
10.1103/PhysRevLett.96.086805
-
E. McCann and V. I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006). 10.1103/PhysRevLett.96.086805
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 086805
-
-
McCann, E.1
Fal'Ko, V.I.2
-
33
-
-
34547298111
-
-
10.1103/PhysRevLett.98.260402
-
Shi-Liang Zhu, B. Wang, and L.-M. Duan, Phys. Rev. Lett. 98, 260402 (2007). 10.1103/PhysRevLett.98.260402
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 260402
-
-
Zhu, S.1
Wang, B.2
Duan, L.-M.3
-
34
-
-
38749087625
-
-
10.1103/PhysRevA.77.011802
-
G. Juzeliunas, J. Ruseckas, M. Lindberg, L. Santos, and P. Ohberg, Phys. Rev. A 77, 011802 (R) (2008). 10.1103/PhysRevA.77.011802
-
(2008)
Phys. Rev. A
, vol.77
, pp. 011802
-
-
Juzeliunas, G.1
Ruseckas, J.2
Lindberg, M.3
Santos, L.4
Ohberg, P.5
-
35
-
-
79051470248
-
-
10.1209/0295-5075/83/54002
-
M. Merkl, F. E. Zimmer, G. Juzeliunas, and P. Öhberg, Europhys. Lett. 83, 54002 (2008). 10.1209/0295-5075/83/54002
-
(2008)
Europhys. Lett.
, vol.83
, pp. 54002
-
-
Merkl, M.1
Zimmer, F.E.2
Juzeliunas, G.3
Öhberg, P.4
-
36
-
-
46449129436
-
-
10.1088/1367-2630/10/4/045022
-
A. Jacob, P. Öhberg, G. Juzeliunas, and L. Santos, New J. Phys. 10, 045022 (2008). 10.1088/1367-2630/10/4/045022
-
(2008)
New J. Phys.
, vol.10
, pp. 045022
-
-
Jacob, A.1
Öhberg, P.2
Juzeliunas, G.3
Santos, L.4
-
37
-
-
42249112103
-
-
10.1103/PhysRevA.77.043410
-
I. I. Satija, D. C. Dakin, J. Y. Vaishnav, and C. W. Clark, Phys. Rev. A 77, 043410 (2008). 10.1103/PhysRevA.77.043410
-
(2008)
Phys. Rev. A
, vol.77
, pp. 043410
-
-
Satija, I.I.1
Dakin, D.C.2
Vaishnav, J.Y.3
Clark, C.W.4
-
40
-
-
34250927825
-
-
10.1007/BF01339714
-
V. Fock, Z. Phys. 57, 261 (1929). 10.1007/BF01339714
-
(1929)
Z. Phys.
, vol.57
, pp. 261
-
-
Fock, V.1
-
42
-
-
70249137341
-
-
Note
-
When we use the direct coordinate transformation of Eq. 4 to cylindrical coordinates we obtain the following Dirac equation: i γ0 ∂ψc/∂t + i γ̄ 1 ∂ ψc / ∂ρ + i γ̄ 2 /ρ ∂ ψc / ∂φ + i γ3 ∂ ψc / ∂z -m ψc =0, where γ̄ 0 = γ0, γ̄ 1 =cos φ γ1 + sin φ γ2, γ̄ 2 =-sin φ γ1 + cos φ γ2, and γ̄ 3 = γ3 are space-dependent Dirac matrices in cylindrical coordinates. Clearly, the spinor ψ of Eq. 11 and the spinor ψc are not identical but are connected by following transformation ψ=S ψc with S=exp [i 1 2 φ Σ3], which is a unitary transformation. In this way, we can use the Dirac equation in form 11 with the spinorial connection or make use of the above Dirac equation obtained by a transformation of coordinates where the Dirac matrices are space dependent. The relation between the spinors is a unitary matrix transforming ψ into ψc. Notice that an observable Ǒ c in Cartesian representation is transformed according to Ǒ c → Ǒ = S-1 Ǒ c S. In this way the energy in both representations is the same due to the fact that the unitary transformations are time independent.
-
-
-
-
43
-
-
70249134687
-
-
In it is well discussed that the solution of the second-order equation, originated from the Dirac equation, includes redundant solutions which do not satisfy the original first-order equation. The appropriate choice of solutions requires a specific procedure. The customary procedure is that, if φ is solution of a second-order equation, the correct solution of the first-order equation is ψ= [i γμ ∂μ -i γi Ai AC +m] φ. If we multiply this equation by [i γμ ∂μ -i γi Ai AC - m], we find that the right-hand side vanishes if φ satisfies Dirac equation 7.
-
In it is well discussed that the solution of the second-order equation, originated from the Dirac equation, includes redundant solutions which do not satisfy the original first-order equation. The appropriate choice of solutions requires a specific procedure. The customary procedure is that, if φ is solution of a second-order equation, the correct solution of the first-order equation is ψ= [i γμ ∂μ -i γi Ai AC +m] φ. If we multiply this equation by [i γμ ∂μ -i γi Ai AC - m], we find that the right-hand side vanishes if φ satisfies Dirac equation 7.
-
-
-
-
44
-
-
70249122473
-
-
Due to the choice of Cartesian coordinates in the Landau gauge, the dependence on I does not appear explicitly in expression 46 for the eigenvalues. Notice that if we compare expression 28 46 we can find that the relation between v and n is v = n + l ζ sl / 2 + s ζ s/2.
-
Due to the choice of Cartesian coordinates in the Landau gauge, the dependence on I does not appear explicitly in expression 46 for the eigenvalues. Notice that if we compare expression 28 46 we can find that the relation between v and n is v = n + l ζ sl / 2 + s ζ s/2.
-
-
-
|