메뉴 건너뛰기




Volumn 382, Issue , 2009, Pages

Optimal reverse prediction: A unified perspective on supervised, unsupervised and semi-supervised learning

Author keywords

[No Author keywords available]

Indexed keywords

K-MEANS CLUSTERING; LEAST SQUARE; MODEL PARAMETERS; NON-LINEAR; NORMALIZED GRAPH; PRINCIPAL COMPONENTS ANALYSIS; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; SEMISUPERVISED LEARNING ALGORITHM; STATE OF THE ART; UNSUPERVISED TRAINING;

EID: 70049097251     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1553374.1553519     Document Type: Conference Paper
Times cited : (2)

References (29)
  • 1
    • 26944451289 scopus 로고    scopus 로고
    • A PAC-style model for learning from labeled and unlabeled data
    • Balcan, M.-F.,&Blum, A. (2005). A PAC-style model for learning from labeled and unlabeled data. Conf. Comput. Learn. Theory (COLT) (pp. 111-126).
    • (2005) Conf. Comput. Learn. Theory (COLT) , pp. 111-126
    • Balcan, M.-F.1    Blum, A.2
  • 2
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin, M., Niyogi, P.,&Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, 2399-2434.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 5
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • Blum, A.,&Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. Conf. Comput. Learn. Theory (COLT) (pp. 92-100).
    • (1998) Conf. Comput. Learn. Theory (COLT) , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 8
    • 70049107351 scopus 로고    scopus 로고
    • Data dependent regularization
    • O. Chapelle, B. Scholköpf and A. Zien Eds, MIT Press
    • Corduneanu, A.,&Jaakkola., T. (2006). Data dependent regularization. In O. Chapelle, B. Scholköpf and A. Zien (Eds.), Semi-supervised learning, 163-182. MIT Press.
    • (2006) Semi-supervised learning , pp. 163-182
    • Corduneanu, A.1    Jaakkola, T.2
  • 11
  • 12
    • 14344257496 scopus 로고    scopus 로고
    • Ding, C.,&He, X. (2004). K-means clustering via principal component analysis. Inter. Conf. Mach. Learn. (ICML) (pp. 225-232).
    • Ding, C.,&He, X. (2004). K-means clustering via principal component analysis. Inter. Conf. Mach. Learn. (ICML) (pp. 225-232).
  • 13
  • 14
    • 1942484960 scopus 로고    scopus 로고
    • Joachims, T. (2003). Transductive learning via spectral graph partitioning. Inter. Conf. Mach. Learn. (ICML) (pp. 290-297).
    • Joachims, T. (2003). Transductive learning via spectral graph partitioning. Inter. Conf. Mach. Learn. (ICML) (pp. 290-297).
  • 15
    • 0033484634 scopus 로고    scopus 로고
    • On a relation between principal components and regression analysis
    • Jong, J.-C.,&Kotz, S. (1999). On a relation between principal components and regression analysis. The American Statistician, 53, 349-351.
    • (1999) The American Statistician , vol.53 , pp. 349-351
    • Jong, J.-C.1    Kotz, S.2
  • 18
    • 58149202361 scopus 로고    scopus 로고
    • Semisupervised graph clustering: A kernel approach
    • Kulis, B., Basu, S.,&Dhillon, I. (2009). Semisupervised graph clustering: A kernel approach. Machine Learning, 74, 1-22.
    • (2009) Machine Learning , vol.74 , pp. 1-22
    • Kulis, B.1    Basu, S.2    Dhillon, I.3
  • 19
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Berkeley Symp. on Math. Stats. and Prob (pp. 281-297).
    • (1967) Berkeley Symp. on Math. Stats. and Prob , pp. 281-297
    • MacQueen, J.1
  • 20
    • 84898970836 scopus 로고    scopus 로고
    • Mika, S., Schölkopf, B., Smola, A., Müller, K.-R., Scholz, M.,&Rätsch G. (1998). Kernel PCA and de-noising in feature spaces. Adv. Neural Info. Proc. Sys. 11 (NIPS) (pp. 536-542).
    • Mika, S., Schölkopf, B., Smola, A., Müller, K.-R., Scholz, M.,&Rätsch G. (1998). Kernel PCA and de-noising in feature spaces. Adv. Neural Info. Proc. Sys. 11 (NIPS) (pp. 536-542).
  • 21
    • 39449098473 scopus 로고    scopus 로고
    • Approximating k-meanstype clustering via semidefinite programming
    • Peng, J.,&Wei, Y. (2007). Approximating k-meanstype clustering via semidefinite programming. SIAM Journal on Optimization, 186 - 205.
    • (2007) SIAM Journal on Optimization , pp. 186-205
    • Peng, J.1    Wei, Y.2
  • 24
    • 31844440904 scopus 로고    scopus 로고
    • Sindhwani, V., Niyogi, P.,&Belkin, M. (2005). Beyond the point cloud: from transductive to semisupervised learning. Inter. Conf. Mach. Learn. (ICML) (pp. 824-831).
    • Sindhwani, V., Niyogi, P.,&Belkin, M. (2005). Beyond the point cloud: from transductive to semisupervised learning. Inter. Conf. Mach. Learn. (ICML) (pp. 824-831).
  • 25
    • 84859905260 scopus 로고    scopus 로고
    • Contrastive estimation: Training log-linear models on unlabeled data
    • Smith, N.,&Eisner, J. (2005). Contrastive estimation: Training log-linear models on unlabeled data. Conf. Assoc. Comput. Ling. (ACL) (pp. 354-362).
    • (2005) Conf. Assoc. Comput. Ling. (ACL) , pp. 354-362
    • Smith, N.1    Eisner, J.2
  • 26
    • 70049093695 scopus 로고    scopus 로고
    • Xing, E.,&Jordan, M. (2003). On semidefinite relaxation for normalized k-cut and connections to spectral clustering. TR CSD-03-1265, Berkeley.
    • Xing, E.,&Jordan, M. (2003). On semidefinite relaxation for normalized k-cut and connections to spectral clustering. TR CSD-03-1265, Berkeley.
  • 28
    • 45949096880 scopus 로고    scopus 로고
    • Discrete regularization
    • O. Chapelle, B. Scholköpf and A. Zien Eds, MIT Press
    • Zhou, D.,&Schölkopf, B. (2006). Discrete regularization. In O. Chapelle, B. Scholköpf and A. Zien (Eds.), Semi-supervised learning, 221-232. MIT Press.
    • (2006) Semi-supervised learning , pp. 221-232
    • Zhou, D.1    Schölkopf, B.2
  • 29
    • 70049085301 scopus 로고    scopus 로고
    • Zhu, X. (2005). Semi-supervised learning literature survey. TR 1530, U. Wisconsin, CS Dept.
    • Zhu, X. (2005). Semi-supervised learning literature survey. TR 1530, U. Wisconsin, CS Dept.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.