-
1
-
-
26944451289
-
A PAC-style model for learning from labeled and unlabeled data
-
Balcan, M.-F.,&Blum, A. (2005). A PAC-style model for learning from labeled and unlabeled data. Conf. Comput. Learn. Theory (COLT) (pp. 111-126).
-
(2005)
Conf. Comput. Learn. Theory (COLT)
, pp. 111-126
-
-
Balcan, M.-F.1
Blum, A.2
-
2
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
Belkin, M., Niyogi, P.,&Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, 2399-2434.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
8
-
-
70049107351
-
Data dependent regularization
-
O. Chapelle, B. Scholköpf and A. Zien Eds, MIT Press
-
Corduneanu, A.,&Jaakkola., T. (2006). Data dependent regularization. In O. Chapelle, B. Scholköpf and A. Zien (Eds.), Semi-supervised learning, 163-182. MIT Press.
-
(2006)
Semi-supervised learning
, pp. 163-182
-
-
Corduneanu, A.1
Jaakkola, T.2
-
12
-
-
14344257496
-
-
Ding, C.,&He, X. (2004). K-means clustering via principal component analysis. Inter. Conf. Mach. Learn. (ICML) (pp. 225-232).
-
Ding, C.,&He, X. (2004). K-means clustering via principal component analysis. Inter. Conf. Mach. Learn. (ICML) (pp. 225-232).
-
-
-
-
13
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
Joachims, T. (1999). Transductive inference for text classification using support vector machines. Proceed. Inter. Conf. on Machine Learning (ICML).
-
(1999)
Proceed. Inter. Conf. on Machine Learning (ICML)
-
-
Joachims, T.1
-
14
-
-
1942484960
-
-
Joachims, T. (2003). Transductive learning via spectral graph partitioning. Inter. Conf. Mach. Learn. (ICML) (pp. 290-297).
-
Joachims, T. (2003). Transductive learning via spectral graph partitioning. Inter. Conf. Mach. Learn. (ICML) (pp. 290-297).
-
-
-
-
15
-
-
0033484634
-
On a relation between principal components and regression analysis
-
Jong, J.-C.,&Kotz, S. (1999). On a relation between principal components and regression analysis. The American Statistician, 53, 349-351.
-
(1999)
The American Statistician
, vol.53
, pp. 349-351
-
-
Jong, J.-C.1
Kotz, S.2
-
18
-
-
58149202361
-
Semisupervised graph clustering: A kernel approach
-
Kulis, B., Basu, S.,&Dhillon, I. (2009). Semisupervised graph clustering: A kernel approach. Machine Learning, 74, 1-22.
-
(2009)
Machine Learning
, vol.74
, pp. 1-22
-
-
Kulis, B.1
Basu, S.2
Dhillon, I.3
-
19
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Berkeley Symp. on Math. Stats. and Prob (pp. 281-297).
-
(1967)
Berkeley Symp. on Math. Stats. and Prob
, pp. 281-297
-
-
MacQueen, J.1
-
20
-
-
84898970836
-
-
Mika, S., Schölkopf, B., Smola, A., Müller, K.-R., Scholz, M.,&Rätsch G. (1998). Kernel PCA and de-noising in feature spaces. Adv. Neural Info. Proc. Sys. 11 (NIPS) (pp. 536-542).
-
Mika, S., Schölkopf, B., Smola, A., Müller, K.-R., Scholz, M.,&Rätsch G. (1998). Kernel PCA and de-noising in feature spaces. Adv. Neural Info. Proc. Sys. 11 (NIPS) (pp. 536-542).
-
-
-
-
21
-
-
39449098473
-
Approximating k-meanstype clustering via semidefinite programming
-
Peng, J.,&Wei, Y. (2007). Approximating k-meanstype clustering via semidefinite programming. SIAM Journal on Optimization, 186 - 205.
-
(2007)
SIAM Journal on Optimization
, pp. 186-205
-
-
Peng, J.1
Wei, Y.2
-
24
-
-
31844440904
-
-
Sindhwani, V., Niyogi, P.,&Belkin, M. (2005). Beyond the point cloud: from transductive to semisupervised learning. Inter. Conf. Mach. Learn. (ICML) (pp. 824-831).
-
Sindhwani, V., Niyogi, P.,&Belkin, M. (2005). Beyond the point cloud: from transductive to semisupervised learning. Inter. Conf. Mach. Learn. (ICML) (pp. 824-831).
-
-
-
-
25
-
-
84859905260
-
Contrastive estimation: Training log-linear models on unlabeled data
-
Smith, N.,&Eisner, J. (2005). Contrastive estimation: Training log-linear models on unlabeled data. Conf. Assoc. Comput. Ling. (ACL) (pp. 354-362).
-
(2005)
Conf. Assoc. Comput. Ling. (ACL)
, pp. 354-362
-
-
Smith, N.1
Eisner, J.2
-
26
-
-
70049093695
-
-
Xing, E.,&Jordan, M. (2003). On semidefinite relaxation for normalized k-cut and connections to spectral clustering. TR CSD-03-1265, Berkeley.
-
Xing, E.,&Jordan, M. (2003). On semidefinite relaxation for normalized k-cut and connections to spectral clustering. TR CSD-03-1265, Berkeley.
-
-
-
-
27
-
-
33749255074
-
Maximum margin clustering
-
Xu, L., Neufeld, J., Larson, B.,&Schuurmans, D. (2004). Maximum margin clustering. Adv. Neural Info. Proc. Sys. 17 (NIPS) (pp. 1537-1544).
-
(2004)
Adv. Neural Info. Proc. Sys. 17 (NIPS)
, pp. 1537-1544
-
-
Xu, L.1
Neufeld, J.2
Larson, B.3
Schuurmans, D.4
-
28
-
-
45949096880
-
Discrete regularization
-
O. Chapelle, B. Scholköpf and A. Zien Eds, MIT Press
-
Zhou, D.,&Schölkopf, B. (2006). Discrete regularization. In O. Chapelle, B. Scholköpf and A. Zien (Eds.), Semi-supervised learning, 221-232. MIT Press.
-
(2006)
Semi-supervised learning
, pp. 221-232
-
-
Zhou, D.1
Schölkopf, B.2
-
29
-
-
70049085301
-
-
Zhu, X. (2005). Semi-supervised learning literature survey. TR 1530, U. Wisconsin, CS Dept.
-
Zhu, X. (2005). Semi-supervised learning literature survey. TR 1530, U. Wisconsin, CS Dept.
-
-
-
|