메뉴 건너뛰기




Volumn , Issue , 2008, Pages 1454-1459

ANFIS and NNARX based rainfall-runoff modeling

Author keywords

ANFIS; Gamma Test; NNARX; Rainfall runoff; UK

Indexed keywords

ANFIS; GAMMA TEST; NNARX; RAINFALL-RUNOFF; UK;

EID: 69949127811     PISSN: 1062922X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICSMC.2008.4811490     Document Type: Conference Paper
Times cited : (21)

References (20)
  • 1
    • 0023524387 scopus 로고
    • Nearest neighbour methods for non-parametric rainfall runoff forecasting
    • D.M. Karlsson and S. Yakowitz, "Nearest neighbour methods for non-parametric rainfall runoff forecasting, Water Resources Research 23 (7), pp. 1300-1308, 1987.
    • (1987) Water Resources Research , vol.23 , Issue.7 , pp. 1300-1308
    • Karlsson, D.M.1    Yakowitz, S.2
  • 2
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • N. Sajikumar and B.S. Thandaveswara, "A non-linear rainfall-runoff model using an artificial neural network", Journal of Hydrology, 216, pp. 32-55, 2000.
    • (2000) Journal of Hydrology , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 3
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behaviour of artificial neural network river flow models
    • K. P. Sudheer, and A. Jain, "Explaining the internal behaviour of artificial neural network river flow models", Hydrological Processes, 18, pp. 833-844, 2004.
    • (2004) Hydrological Processes , vol.18 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, "Artificial neural networks in hydrology I: preliminary concepts", Journal of Hydrologic Engineering, 5(2), pp. 115-123, 2000.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 34249943593 scopus 로고    scopus 로고
    • River flow estimation using adaptive neuro fuzzy inference system
    • M. Firat and M. Gungor," River flow estimation using adaptive neuro fuzzy inference system", Mathematics and Computers in Simulation, 75, pp. 87-96, 2007.
    • (2007) Mathematics and Computers in Simulation , vol.75 , pp. 87-96
    • Firat, M.1    Gungor, M.2
  • 6
    • 1942490118 scopus 로고    scopus 로고
    • A neuro fuzzy computing technique for modeling hydrological time series
    • P.C. Nayak, K.P. Sudheer, D.M. Ragan and K.S. Ramasastri, "A neuro fuzzy computing technique for modeling hydrological time series", Journal of Hydrology, 29, pp. 52-66, 2004.
    • (2004) Journal of Hydrology , vol.29 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Ragan, D.M.3    Ramasastri, K.S.4
  • 7
    • 36649032078 scopus 로고    scopus 로고
    • Rainfall-runoff modeling through hybrid intelligent system
    • P.C. Nayak, K.P. Sudheer, and S. K. Jain, "Rainfall-runoff modeling through hybrid intelligent system", Water Resources Research, 43, pp. 1-17, 2007.
    • (2007) Water Resources Research , vol.43 , pp. 1-17
    • Nayak, P.C.1    Sudheer, K.P.2    Jain, S.K.3
  • 8
    • 11144315254 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using adaptive neuro-fuzzy systems
    • D. Gautam, and K. Holz, "Rainfall-runoff modelling using adaptive neuro-fuzzy systems", Journal of Hydroinformatics, 3 (1), pp. 3-10, 2001.
    • (2001) Journal of Hydroinformatics , vol.3 , Issue.1 , pp. 3-10
    • Gautam, D.1    Holz, K.2
  • 9
    • 2342635095 scopus 로고    scopus 로고
    • A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building
    • A. Mechaqrane, and M. Zouak, "A comparison of linear and neural network ARX models applied to a prediction of the indoor temperature of a building", Neural Comput & Applic, 13, pp. 32-37, 2004.
    • (2004) Neural Comput & Applic , vol.13 , pp. 32-37
    • Mechaqrane, A.1    Zouak, M.2
  • 10
    • 21744432026 scopus 로고    scopus 로고
    • A note on the gamma test. Neural Computing and Applications
    • S. Agalbjrn, N. Koncar, and A. J. Jones, "A note on the gamma test. Neural Computing and Applications", Neural Computing and Applications, 5(3), pp. 131-133, 1997.
    • (1997) Neural Computing and Applications , vol.5 , Issue.3 , pp. 131-133
    • Agalbjrn, S.1    Koncar, N.2    Jones, A.J.3
  • 11
    • 0011274511 scopus 로고    scopus 로고
    • winGamma: A non-linear data analysis and modelling tool with applications to flood prediction
    • Unpublished PhD thesis, Department of Computer Science, Cardiff University, Wales, UK
    • P. J. Durrant, "winGamma: A non-linear data analysis and modelling tool with applications to flood prediction". Unpublished PhD thesis, Department of Computer Science, Cardiff University, Wales, UK, 2001.
    • (2001)
    • Durrant, P.J.1
  • 12
    • 65749117808 scopus 로고    scopus 로고
    • Model Data Selection using Gamma Test for Daily Solar Radiation Estimation
    • in press
    • R. Remesan, M. A. Shamim, and D. Han, "Model Data Selection using Gamma Test for Daily Solar Radiation Estimation", Hydrological Processes, in press.
    • Hydrological Processes
    • Remesan, R.1    Shamim, M.A.2    Han, D.3
  • 13
    • 26044449236 scopus 로고    scopus 로고
    • Data derived estimates of noise using near neighbour asymptotics
    • Unpublished PhD thesis, Department of Computer Science, Cardiff University, Wales, UK
    • D. Evans, "Data derived estimates of noise using near neighbour asymptotics", Unpublished PhD thesis, Department of Computer Science, Cardiff University, Wales, UK, 2002.
    • (2002)
    • Evans, D.1
  • 14
    • 57249098752 scopus 로고    scopus 로고
    • A proof of the gamma test
    • Proceedings of Royal Society
    • D. Evans, and A.J. Jones, "A proof of the gamma test". Proceedings of Royal Society, Series A, 458 (2027), pp. 2759-2799, 2002.
    • (2002) Series A , vol.458 , Issue.2027 , pp. 2759-2799
    • Evans, D.1    Jones, A.J.2
  • 15
    • 0026923535 scopus 로고
    • Evidence aggregation networks for fuzzy logic interface
    • J. Keller, R. Krishnapuram, and F.C.H. Rhee, "Evidence aggregation networks for fuzzy logic interface", IEEE Trans. Neural Network, 3(5), pp. 761-769, 1992.
    • (1992) IEEE Trans. Neural Network , vol.3 , Issue.5 , pp. 761-769
    • Keller, J.1    Krishnapuram, R.2    Rhee, F.C.H.3
  • 16
    • 0026923902 scopus 로고
    • On fuzzy modeling using fuzzy networks woth back-propagation algorithm
    • S. Horikawa, T. Furuhashi, and Y. Uchikawa, (1992), "On fuzzy modeling using fuzzy networks woth back-propagation algorithm", IEEE Trans. Neural Networks, 3(5), pp. 801-806, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 801-806
    • Horikawa, S.1    Furuhashi, T.2    Uchikawa, Y.3
  • 17
    • 0026989504 scopus 로고
    • Fuzzy systems as universal approximators
    • B. Kosko, "Fuzzy systems as universal approximators", Proc., IEEE Int. Conf. Fuzzy Sys., pp. 1153-1162, 1992.
    • (1992) Proc., IEEE Int. Conf. Fuzzy Sys , pp. 1153-1162
    • Kosko, B.1
  • 18
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • J.S.R. Jang, "ANFIS: adaptive-network-based fuzzy inference system", IEEE Trans. Sys. Manage. and Cybernetics, 23(3), 665-685, 1993.
    • (1993) IEEE Trans. Sys. Manage. and Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 20
    • 84942737910 scopus 로고
    • Fitting autoregressive models for prediction
    • H. Akaike, "Fitting autoregressive models for prediction", Ann Inst Stat Math, 21, pp. 243-347, 1969.
    • (1969) Ann Inst Stat Math , vol.21 , pp. 243-347
    • Akaike, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.