메뉴 건너뛰기




Volumn 31, Issue 1, 2010, Pages 336-342

Assessment of the effect of existing corrosion on the tensile behaviour of magnesium alloy AZ31 using neural networks

Author keywords

Corrosion damage; Magnesium alloy; Mechanical properties; Neural networks

Indexed keywords

AZ31 MAGNESIUM ALLOY; CONCEPT-BASED; CORROSION CHARACTERIZATION; CORROSION DAMAGE; EXPERIMENTAL INVESTIGATIONS; MAGNESIUM ALLOY AZ31; NEURAL NETWORK MODEL; RADIAL BASIS FUNCTION NEURAL NETWORKS; STRUCTURAL ALLOYS; TENSILE BEHAVIOUR;

EID: 69549116589     PISSN: 02641275     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.matdes.2009.06.009     Document Type: Article
Times cited : (26)

References (19)
  • 2
    • 0346335856 scopus 로고    scopus 로고
    • Tailoring the structural integrity process to meet the challenges of aging aircraft
    • Simpson D.L., and Brooks C.L. Tailoring the structural integrity process to meet the challenges of aging aircraft. Int J Fatigue 21 (1999) S1-S14
    • (1999) Int J Fatigue , vol.21
    • Simpson, D.L.1    Brooks, C.L.2
  • 9
    • 51549092912 scopus 로고    scopus 로고
    • Effect of prior corrosion on short crack behavior in 2024-T3 aluminum alloy
    • Jones K., Shinde S.R., Clark P.N., and Hoeppner D.W. Effect of prior corrosion on short crack behavior in 2024-T3 aluminum alloy. Corros Sci 50 (2008) 2588-2595
    • (2008) Corros Sci , vol.50 , pp. 2588-2595
    • Jones, K.1    Shinde, S.R.2    Clark, P.N.3    Hoeppner, D.W.4
  • 10
    • 23444452376 scopus 로고    scopus 로고
    • A study on stress corrosion cracking and hydrogen embrittlement of AZ31 magnesium alloy
    • Song R.G., Blawert C., Dietzel W., and Atrens A. A study on stress corrosion cracking and hydrogen embrittlement of AZ31 magnesium alloy. Mater Sci Eng A 399 (2005) 308-317
    • (2005) Mater Sci Eng A , vol.399 , pp. 308-317
    • Song, R.G.1    Blawert, C.2    Dietzel, W.3    Atrens, A.4
  • 11
    • 29144446323 scopus 로고    scopus 로고
    • Artificial neural networks for modelling the mechanical properties of steels in various applications
    • Sterzovski Z., Nolan D., Carpenter K.R., Dunne D.P., and Norrish J. Artificial neural networks for modelling the mechanical properties of steels in various applications. J Mater Process Technol 170 (2005) 536-544
    • (2005) J Mater Process Technol , vol.170 , pp. 536-544
    • Sterzovski, Z.1    Nolan, D.2    Carpenter, K.R.3    Dunne, D.P.4    Norrish, J.5
  • 12
    • 0037144786 scopus 로고    scopus 로고
    • Modelling of microstructure and mechanical properties of steel using the artificial neural network
    • Kusiak J., and Kuziak R. Modelling of microstructure and mechanical properties of steel using the artificial neural network. J Mater Process Technol 127 (2002) 115-121
    • (2002) J Mater Process Technol , vol.127 , pp. 115-121
    • Kusiak, J.1    Kuziak, R.2
  • 13
    • 15544370563 scopus 로고    scopus 로고
    • Prediction of mechanical properties of DP steels using neural network model
    • Bahrami A., Mousavi Anijdan S.H., and Ekrami A. Prediction of mechanical properties of DP steels using neural network model. J Alloys Compd 392 (2005) 177-182
    • (2005) J Alloys Compd , vol.392 , pp. 177-182
    • Bahrami, A.1    Mousavi Anijdan, S.H.2    Ekrami, A.3
  • 14
    • 0345359456 scopus 로고    scopus 로고
    • Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network
    • Guo Z., and Sha W. Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network. Comput Mater Sci 29 (2004) 12-28
    • (2004) Comput Mater Sci , vol.29 , pp. 12-28
    • Guo, Z.1    Sha, W.2
  • 15
    • 0037063817 scopus 로고    scopus 로고
    • A study on the prediction of the mechanical properties of a ceramic tool based on an artificial neural network
    • Huang C.Z., Zhang L., He L., Sun J., Zou B., Li Z.Q., et al. A study on the prediction of the mechanical properties of a ceramic tool based on an artificial neural network. J Mater Process Technol 129 (2002) 399-402
    • (2002) J Mater Process Technol , vol.129 , pp. 399-402
    • Huang, C.Z.1    Zhang, L.2    He, L.3    Sun, J.4    Zou, B.5    Li, Z.Q.6
  • 16
    • 0034921649 scopus 로고    scopus 로고
    • Modeling the correlation between processing parameters and properties in titanium alloys using artificial neural network
    • Malinov S., Sha W., and McKeown J.J. Modeling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comput Mater Sci 21 (2001) 375-394
    • (2001) Comput Mater Sci , vol.21 , pp. 375-394
    • Malinov, S.1    Sha, W.2    McKeown, J.J.3
  • 17
    • 0033892093 scopus 로고    scopus 로고
    • Using artificial neural networks to predict the fatigue life of carbon and low-alloy steels
    • Pleune T., and Chopra O.K. Using artificial neural networks to predict the fatigue life of carbon and low-alloy steels. Nucl Eng Des 197 (2000) 1-12
    • (2000) Nucl Eng Des , vol.197 , pp. 1-12
    • Pleune, T.1    Chopra, O.K.2
  • 18
    • 69549104700 scopus 로고    scopus 로고
    • Doctoral Thesis, Department of Mechanical Engineering and Aeronautics, University of Patras, Greece;
    • Chamos AN. Mechanical behaviour of advanced aeronautical magnesium alloys. Doctoral Thesis, Department of Mechanical Engineering and Aeronautics, University of Patras, Greece; 2008.
    • (2008) Mechanical behaviour of advanced aeronautical magnesium alloys
    • Chamos, A.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.