-
1
-
-
0003270909
-
Monotone dynamical systems
-
Amer. Math. Soc., Providence, RI
-
Smith H.L. Monotone dynamical systems. Math. Surveys Monogr (1995), Amer. Math. Soc., Providence, RI
-
(1995)
Math. Surveys Monogr
-
-
Smith, H.L.1
-
2
-
-
84941442792
-
A non-linear difference-differential equation
-
Wright E.M. A non-linear difference-differential equation. J. Reine Angew. Math. 194 (1955) 66-87
-
(1955)
J. Reine Angew. Math.
, vol.194
, pp. 66-87
-
-
Wright, E.M.1
-
3
-
-
0000602617
-
Asymptotic stability for one dimensional delay-differential equations
-
Yorke J.A. Asymptotic stability for one dimensional delay-differential equations. J. Differential Equations 7 (1970) 189-202
-
(1970)
J. Differential Equations
, vol.7
, pp. 189-202
-
-
Yorke, J.A.1
-
4
-
-
0011638226
-
Global stability for a general population model with time delays
-
Differential Equations with Applications to Biology. Ruan S., et al. (Ed), American Mathematical Society, Providence, R.I.
-
So J.W.-H., and Yu J.S. Global stability for a general population model with time delays. In: Ruan S., et al. (Ed). Differential Equations with Applications to Biology. Fields Institute Communications vol. 21 (1999), American Mathematical Society, Providence, R.I. 447-457
-
(1999)
Fields Institute Communications
, vol.21
, pp. 447-457
-
-
So, J.W.-H.1
Yu, J.S.2
-
5
-
-
15744369619
-
On a generalized Yorke condition for scalar delayed population models
-
Faria T., Liz E., Oliveira J.J., and Trofimchuk S. On a generalized Yorke condition for scalar delayed population models. Discrete Contin. Dyn. Syst. 12 3 (2005) 481-500
-
(2005)
Discrete Contin. Dyn. Syst.
, vol.12
, Issue.3
, pp. 481-500
-
-
Faria, T.1
Liz, E.2
Oliveira, J.J.3
Trofimchuk, S.4
-
6
-
-
0034162505
-
A new approach to the global stability problem in a delay Lotka-Volterra differential equation
-
Gyori I. A new approach to the global stability problem in a delay Lotka-Volterra differential equation. Math. Comput. Modelling 31 (2000) 9-28
-
(2000)
Math. Comput. Modelling
, vol.31
, pp. 9-28
-
-
Gyori, I.1
-
9
-
-
33644673010
-
Asymptotic stability for delayed logistic type equations
-
Faria T. Asymptotic stability for delayed logistic type equations. Math. Comput. Modelling 43 (2006) 433-445
-
(2006)
Math. Comput. Modelling
, vol.43
, pp. 433-445
-
-
Faria, T.1
-
10
-
-
0001243427
-
Monotone semiflows generated by functional differential equations
-
Smith H.L. Monotone semiflows generated by functional differential equations. J. Differential Equations 66 (1987) 420-442
-
(1987)
J. Differential Equations
, vol.66
, pp. 420-442
-
-
Smith, H.L.1
-
12
-
-
18144406565
-
Convergence for pseudo monotone semiflows on product ordered topological spaces
-
Yi T.S., and Huang L.H. Convergence for pseudo monotone semiflows on product ordered topological spaces. J. Differential Equations 214 (2005) 429-456
-
(2005)
J. Differential Equations
, vol.214
, pp. 429-456
-
-
Yi, T.S.1
Huang, L.H.2
-
13
-
-
69249226316
-
-
Springer-Verlag, New York
-
Wu J. Theory and Applications of Partial Functional Differential Equations. Appl. Math. Sci. vol. 119 (1996), Springer-Verlag, New York
-
(1996)
Appl. Math. Sci.
, vol.119
-
-
Wu, J.1
-
14
-
-
24944511236
-
Oscillation of continuous and discrete diffusive delay Nicholson's blowflies models
-
Saker S.H. Oscillation of continuous and discrete diffusive delay Nicholson's blowflies models. Appl. Math. Comput. 167 (2005) 179-197
-
(2005)
Appl. Math. Comput.
, vol.167
, pp. 179-197
-
-
Saker, S.H.1
-
15
-
-
51249096963
-
Existence of positive periodic solutions for a generalized Nicholson's blowflies model
-
Lia J., and Du C. Existence of positive periodic solutions for a generalized Nicholson's blowflies model. J. Comput. Appl. Math. 221 (2008) 226-233
-
(2008)
J. Comput. Appl. Math.
, vol.221
, pp. 226-233
-
-
Lia, J.1
Du, C.2
-
16
-
-
53349160548
-
Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case
-
Yi T.S., and Zou X. Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case. J. Differential Equations 245 11 (2008) 3376-3388
-
(2008)
J. Differential Equations
, vol.245
, Issue.11
, pp. 3376-3388
-
-
Yi, T.S.1
Zou, X.2
|