메뉴 건너뛰기




Volumn 233, Issue 2, 2009, Pages 217-223

Global stability of a class of delay differential systems

Author keywords

Delay differential equation; Global stability; Nonnegative function space; Positive equilibrium

Indexed keywords

DELAY DIFFERENTIAL EQUATION; DELAY DIFFERENTIAL EQUATIONS; DELAY DIFFERENTIAL SYSTEMS; GLOBAL STABILITY; NONNEGATIVE FUNCTION SPACE; NONNEGATIVE FUNCTIONS; POSITIVE EQUILIBRIUM;

EID: 69249222506     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2009.07.024     Document Type: Article
Times cited : (18)

References (17)
  • 1
    • 0003270909 scopus 로고
    • Monotone dynamical systems
    • Amer. Math. Soc., Providence, RI
    • Smith H.L. Monotone dynamical systems. Math. Surveys Monogr (1995), Amer. Math. Soc., Providence, RI
    • (1995) Math. Surveys Monogr
    • Smith, H.L.1
  • 2
    • 84941442792 scopus 로고
    • A non-linear difference-differential equation
    • Wright E.M. A non-linear difference-differential equation. J. Reine Angew. Math. 194 (1955) 66-87
    • (1955) J. Reine Angew. Math. , vol.194 , pp. 66-87
    • Wright, E.M.1
  • 3
    • 0000602617 scopus 로고
    • Asymptotic stability for one dimensional delay-differential equations
    • Yorke J.A. Asymptotic stability for one dimensional delay-differential equations. J. Differential Equations 7 (1970) 189-202
    • (1970) J. Differential Equations , vol.7 , pp. 189-202
    • Yorke, J.A.1
  • 4
    • 0011638226 scopus 로고    scopus 로고
    • Global stability for a general population model with time delays
    • Differential Equations with Applications to Biology. Ruan S., et al. (Ed), American Mathematical Society, Providence, R.I.
    • So J.W.-H., and Yu J.S. Global stability for a general population model with time delays. In: Ruan S., et al. (Ed). Differential Equations with Applications to Biology. Fields Institute Communications vol. 21 (1999), American Mathematical Society, Providence, R.I. 447-457
    • (1999) Fields Institute Communications , vol.21 , pp. 447-457
    • So, J.W.-H.1    Yu, J.S.2
  • 5
    • 15744369619 scopus 로고    scopus 로고
    • On a generalized Yorke condition for scalar delayed population models
    • Faria T., Liz E., Oliveira J.J., and Trofimchuk S. On a generalized Yorke condition for scalar delayed population models. Discrete Contin. Dyn. Syst. 12 3 (2005) 481-500
    • (2005) Discrete Contin. Dyn. Syst. , vol.12 , Issue.3 , pp. 481-500
    • Faria, T.1    Liz, E.2    Oliveira, J.J.3    Trofimchuk, S.4
  • 6
    • 0034162505 scopus 로고    scopus 로고
    • A new approach to the global stability problem in a delay Lotka-Volterra differential equation
    • Gyori I. A new approach to the global stability problem in a delay Lotka-Volterra differential equation. Math. Comput. Modelling 31 (2000) 9-28
    • (2000) Math. Comput. Modelling , vol.31 , pp. 9-28
    • Gyori, I.1
  • 9
    • 33644673010 scopus 로고    scopus 로고
    • Asymptotic stability for delayed logistic type equations
    • Faria T. Asymptotic stability for delayed logistic type equations. Math. Comput. Modelling 43 (2006) 433-445
    • (2006) Math. Comput. Modelling , vol.43 , pp. 433-445
    • Faria, T.1
  • 10
    • 0001243427 scopus 로고
    • Monotone semiflows generated by functional differential equations
    • Smith H.L. Monotone semiflows generated by functional differential equations. J. Differential Equations 66 (1987) 420-442
    • (1987) J. Differential Equations , vol.66 , pp. 420-442
    • Smith, H.L.1
  • 12
    • 18144406565 scopus 로고    scopus 로고
    • Convergence for pseudo monotone semiflows on product ordered topological spaces
    • Yi T.S., and Huang L.H. Convergence for pseudo monotone semiflows on product ordered topological spaces. J. Differential Equations 214 (2005) 429-456
    • (2005) J. Differential Equations , vol.214 , pp. 429-456
    • Yi, T.S.1    Huang, L.H.2
  • 13
    • 69249226316 scopus 로고    scopus 로고
    • Springer-Verlag, New York
    • Wu J. Theory and Applications of Partial Functional Differential Equations. Appl. Math. Sci. vol. 119 (1996), Springer-Verlag, New York
    • (1996) Appl. Math. Sci. , vol.119
    • Wu, J.1
  • 14
    • 24944511236 scopus 로고    scopus 로고
    • Oscillation of continuous and discrete diffusive delay Nicholson's blowflies models
    • Saker S.H. Oscillation of continuous and discrete diffusive delay Nicholson's blowflies models. Appl. Math. Comput. 167 (2005) 179-197
    • (2005) Appl. Math. Comput. , vol.167 , pp. 179-197
    • Saker, S.H.1
  • 15
    • 51249096963 scopus 로고    scopus 로고
    • Existence of positive periodic solutions for a generalized Nicholson's blowflies model
    • Lia J., and Du C. Existence of positive periodic solutions for a generalized Nicholson's blowflies model. J. Comput. Appl. Math. 221 (2008) 226-233
    • (2008) J. Comput. Appl. Math. , vol.221 , pp. 226-233
    • Lia, J.1    Du, C.2
  • 16
    • 53349160548 scopus 로고    scopus 로고
    • Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case
    • Yi T.S., and Zou X. Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case. J. Differential Equations 245 11 (2008) 3376-3388
    • (2008) J. Differential Equations , vol.245 , Issue.11 , pp. 3376-3388
    • Yi, T.S.1    Zou, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.