메뉴 건너뛰기




Volumn 2, Issue , 2006, Pages 1058-1062

A scalable algorithm for high-quality clustering of Web snippets

Author keywords

Clustering; Meta search engines; Metric spaces; Web snippets

Indexed keywords

COMPUTATIONAL METHODS; METADATA; PROBLEM SOLVING; SEARCH ENGINES; WORLD WIDE WEB;

EID: 33750377487     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1141277.1141527     Document Type: Conference Paper
Times cited : (21)

References (17)
  • 5
    • 0021938963 scopus 로고
    • Clustering to minimize the maximum intercluster distance
    • T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38(2/3):293-306, 1985.
    • (1985) Theoretical Computer Science , vol.38 , Issue.2-3 , pp. 293-306
    • Gonzalez, T.F.1
  • 10
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for the k-means algorithm
    • J. M. Peña, J. A. Lozano, and P. Larrañaga. An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recognition Letters, 20(10):1027-1040, 1999.
    • (1999) Pattern Recognition Letters , vol.20 , Issue.10 , pp. 1027-1040
    • Peña, J.M.1    Lozano, J.A.2    Larrañaga, P.3
  • 12
    • 0021202650 scopus 로고
    • K-means type algorithms: A generalized convergence theorem and characterization of local optimality
    • S. Selim and M. Ismail. K-means type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(1):81-87, 1984.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.6 , Issue.1 , pp. 81-87
    • Selim, S.1    Ismail, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.