메뉴 건너뛰기




Volumn 23, Issue 5, 2009, Pages 887-905

Classifier combination by bayesian networks for handwriting recognition

Author keywords

Bayesian Networks; Combining methods; Handwriting recognition; Multiclassifier system

Indexed keywords

BACK PROPAGATION NEURAL NETWORKS; BORDA COUNT; CLASSIFIER COMBINATION; COMBINING METHOD; COMBINING METHODS; COMBINING RULES; FEATURE VECTORS; HANDWRITING RECOGNITION; HIGH-DIMENSIONAL FEATURE SPACE; INDIVIDUAL CLASSIFIERS; INPUT PATTERNS; LEARNING VECTOR QUANTIZATION NEURAL NETWORKS; MAJORITY VOTE; MULTICLASSIFIER SYSTEM; UCI MACHINE LEARNING REPOSITORY;

EID: 69249128748     PISSN: 02180014     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218001409007387     Document Type: Article
Times cited : (15)

References (24)
  • 2
    • 37249057783 scopus 로고    scopus 로고
    • Modelling multiple-classifier relationships using Bayesian belief networks
    • S. Chindaro, K. Sirlantzis and M. C. Fairhurst, Modelling multiple-classifier relationships using Bayesian belief networks, MCS 2007, pp. 312-321.
    • (2007) MCS , pp. 312-321
    • Chindaro, S.1    Sirlantzis, K.2    Fairhurst, M.C.3
  • 3
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits, A Bayesian method for the induction of probabilistic networks from data, Mach. Learn. 9 (1992) 309-347.
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 4
    • 48149097837 scopus 로고    scopus 로고
    • An adaptive weighted majority rule for combining multiple classifiers
    • C. De Stefano, A. Della Cioppa and A. Marcelli, An adaptive weighted majority rule for combining multiple classifiers, Int. Conf. Pattern Recognition 2002 (2002), pp. 1034-1038.
    • (2002) Int. Conf. Pattern Recognition , vol.2002 , pp. 1034-1038
    • De Stefano, C.1    Della Cioppa, A.2    Marcelli, A.3
  • 5
    • 0033734375 scopus 로고    scopus 로고
    • To reject or not to reject. That's the question . . . an answer in case of neural classifiers
    • C. De Stefano, C. Sansone and M. Vento, To reject or not to reject. That's the question . .. an answer in case of neural classifiers, IEEE Trans. Syst. Man Cybern. 30 Part C(1) (2000) 84-94.
    • (2000) IEEE Trans. Syst. Man Cybern. , vol.30 , Issue.PART C-1 , pp. 84-94
    • De Stefano, C.1    Sansone, C.2    Vento, M.3
  • 6
    • 69249147873 scopus 로고    scopus 로고
    • ftp://ftp.ics.uci.edu/pub/machine-learning-databases/mfeat/
  • 8
    • 23844545305 scopus 로고    scopus 로고
    • Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition
    • S. Gunter and H. Bunke, Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition, Patt. Recogn. Lett. 25 (2004) 1323-1336.
    • (2004) Patt. Recogn. Lett. , vol.25 , pp. 1323-1336
    • Gunter, S.1    Bunke, H.2
  • 9
    • 0011420552 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • ed. M. Jordan (MIT Press, Cambridge, MA, 1999); Also appears as Technical Report MSR-TR-95-06, Microsoft Research, March, (1995); An earlier version appears as Bayesian networks for data mining, Data Min. Knowl. Discov.1 (1997) 79-119.
    • D. Heckerman, A tutorial on learning with Bayesian networks, in Learning in Graphical Models, ed. M. Jordan (MIT Press, Cambridge, MA, 1999); Also appears as Technical Report MSR-TR-95-06, Microsoft Research, March, (1995); An earlier version appears as Bayesian networks for data mining, Data Min. Knowl. Discov. 1 (1997) 79-119.
    • (1999) Learning in Graphical Models
    • Heckerman, D.1
  • 10
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger and D. Chickering, Learning Bayesian networks: the combination of knowledge and statistical data, Mach. Learn. 20 (1995) 197-243.
    • (1995) Mach. Learn. , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 11
    • 0028259890 scopus 로고
    • Decision combination in multiple classifier systems
    • T. K. Ho, J. J. Hull and S. N. Srihari, Decision combination in multiple classifier systems, IEEE Trans. PAMI 16(1) (1994) 66-75.
    • (1994) IEEE Trans. PAMI , vol.16 , Issue.1 , pp. 66-75
    • Ho, T.K.1    Hull, J.J.2    Srihari, S.N.3
  • 12
    • 0029230267 scopus 로고
    • A method of combining multiple classifiers for the recognition of unconstrained handwritten numerals
    • Y. S Huang and C. Y. Suen, A method of combining multiple classifiers for the recognition of unconstrained handwritten numerals, IEEE Trans. PAMI 17(1) (1995) 90-94.
    • (1995) IEEE Trans. PAMI , vol.17 , Issue.1 , pp. 90-94
    • Huang, Y.S.1    Suen, C.Y.2
  • 13
    • 0031169205 scopus 로고    scopus 로고
    • Optimal approximation of discrete probability distribution with kth-order dependency and its application to combining multiple classifiers
    • PII S016786559700041X
    • H.-J. Kang, K. Kim and J. H. Kim, Optimal approximation of discrete probability distribution with kth-order dependency and its applications to combining multiple classifiers, Patt. Recogn. Lett. 18(6) (1997) 515-523. (Pubitemid 127424199)
    • (1997) Pattern Recognition Letters , vol.18 , Issue.6 , pp. 515-523
    • Kang, H.-J.1    Kim, K.2    Kim, J.H.3
  • 14
    • 18644367804 scopus 로고    scopus 로고
    • Combination of multiple classifiers by minimizing the upper bound of Bayes error rate for unconstrained handwritten numeral recognition
    • H.-J. Kang and S.-W. Lee, Combination of multiple classifiers by minimizing the upper bound of Bayes error rate for unconstrained handwritten numeral recognition, Int. J. Patt. Recogn. Artif. Intell. 19(3) (2005) 395-413.
    • (2005) Int. J. Patt. Recogn. Artif. Intell. , vol.19 , Issue.3 , pp. 395-413
    • Kang, H.-J.1    Lee, S.-W.2
  • 17
    • 0003388704 scopus 로고
    • Increasing classifiers for majority vote in OCR. Theoretical considerations and strategies
    • L. Lam and C. Y. Suen, Increasing classifiers for majority vote in OCR. Theoretical considerations and strategies, in Proc. 4th Int. Workshop on Frontiers in Handwriting Recognition (1994), pp. 245-254.
    • (1994) Proc. 4th Int. Workshop on Frontiers in Handwriting Recognition , pp. 245-254
    • Lam, L.1    Suen, C.Y.2
  • 19
    • 0030686390 scopus 로고    scopus 로고
    • Introducing new multiple classifier decision combination topologies: A case study using recognition of handwritten characters
    • A. Rahman and M. Fairhurst, Introducing new multiple classifier decision combination topologies: a case study using recognition of handwritten characters, in Proc. 4th Int. Conf. Document Analysis and Recognition, (1997), pp. 886-891.
    • (1997) Proc. 4th Int. Conf. Document Analysis and Recognition , pp. 886-891
    • Rahman, A.1    Fairhurst, M.2
  • 20
    • 0022471098 scopus 로고
    • Learning representations by Back-propagating errors
    • D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by Back-propagating errors, Nature 323(9) (1986) 533-536.
    • (1986) Nature , vol.323 , Issue.9 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 21
    • 34547397222 scopus 로고    scopus 로고
    • Chaotic elections! A mathematician looks at voting
    • D. G. Saari, Chaotic elections! A mathematician looks at voting, Amer. Math. Soc. (2001).
    • (2001) Amer. Math. Soc.
    • Saari, D.G.1
  • 23
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • L. Xu, A. Krzyzíak and C. Suen, Methods of combining multiple classifiers and their applications to handwriting recognition, IEEE Trans. Syst. Man Cybern. 22(3) (1992) 418-435.
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzíak, A.2    Suen, C.3
  • 24
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z.-H. Zhou, J. Wu and W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell. 137 (2002) 239-263.
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.