-
1
-
-
0025225150
-
Competitive learning algorithms for vector quantization
-
S. C. Ahalt, A. K. Krishnamurty, P. Chen and D. E. Melton, Competitive learning algorithms for vector quantization, Neural Networks 3 (1990) 277-291.
-
(1990)
Neural Networks
, vol.3
, pp. 277-291
-
-
Ahalt, S.C.1
Krishnamurty, A.K.2
Chen, P.3
Melton, D.E.4
-
2
-
-
37249057783
-
Modelling multiple-classifier relationships using Bayesian belief networks
-
S. Chindaro, K. Sirlantzis and M. C. Fairhurst, Modelling multiple-classifier relationships using Bayesian belief networks, MCS 2007, pp. 312-321.
-
(2007)
MCS
, pp. 312-321
-
-
Chindaro, S.1
Sirlantzis, K.2
Fairhurst, M.C.3
-
3
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
G. F. Cooper and E. Herskovits, A Bayesian method for the induction of probabilistic networks from data, Mach. Learn. 9 (1992) 309-347.
-
(1992)
Mach. Learn.
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
5
-
-
0033734375
-
To reject or not to reject. That's the question . . . an answer in case of neural classifiers
-
C. De Stefano, C. Sansone and M. Vento, To reject or not to reject. That's the question . .. an answer in case of neural classifiers, IEEE Trans. Syst. Man Cybern. 30 Part C(1) (2000) 84-94.
-
(2000)
IEEE Trans. Syst. Man Cybern.
, vol.30
, Issue.PART C-1
, pp. 84-94
-
-
De Stefano, C.1
Sansone, C.2
Vento, M.3
-
6
-
-
69249147873
-
-
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/mfeat/
-
-
-
-
8
-
-
23844545305
-
Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition
-
S. Gunter and H. Bunke, Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition, Patt. Recogn. Lett. 25 (2004) 1323-1336.
-
(2004)
Patt. Recogn. Lett.
, vol.25
, pp. 1323-1336
-
-
Gunter, S.1
Bunke, H.2
-
9
-
-
0011420552
-
A tutorial on learning with Bayesian networks
-
ed. M. Jordan (MIT Press, Cambridge, MA, 1999); Also appears as Technical Report MSR-TR-95-06, Microsoft Research, March, (1995); An earlier version appears as Bayesian networks for data mining, Data Min. Knowl. Discov.1 (1997) 79-119.
-
D. Heckerman, A tutorial on learning with Bayesian networks, in Learning in Graphical Models, ed. M. Jordan (MIT Press, Cambridge, MA, 1999); Also appears as Technical Report MSR-TR-95-06, Microsoft Research, March, (1995); An earlier version appears as Bayesian networks for data mining, Data Min. Knowl. Discov. 1 (1997) 79-119.
-
(1999)
Learning in Graphical Models
-
-
Heckerman, D.1
-
10
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger and D. Chickering, Learning Bayesian networks: the combination of knowledge and statistical data, Mach. Learn. 20 (1995) 197-243.
-
(1995)
Mach. Learn.
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
11
-
-
0028259890
-
Decision combination in multiple classifier systems
-
T. K. Ho, J. J. Hull and S. N. Srihari, Decision combination in multiple classifier systems, IEEE Trans. PAMI 16(1) (1994) 66-75.
-
(1994)
IEEE Trans. PAMI
, vol.16
, Issue.1
, pp. 66-75
-
-
Ho, T.K.1
Hull, J.J.2
Srihari, S.N.3
-
12
-
-
0029230267
-
A method of combining multiple classifiers for the recognition of unconstrained handwritten numerals
-
Y. S Huang and C. Y. Suen, A method of combining multiple classifiers for the recognition of unconstrained handwritten numerals, IEEE Trans. PAMI 17(1) (1995) 90-94.
-
(1995)
IEEE Trans. PAMI
, vol.17
, Issue.1
, pp. 90-94
-
-
Huang, Y.S.1
Suen, C.Y.2
-
13
-
-
0031169205
-
Optimal approximation of discrete probability distribution with kth-order dependency and its application to combining multiple classifiers
-
PII S016786559700041X
-
H.-J. Kang, K. Kim and J. H. Kim, Optimal approximation of discrete probability distribution with kth-order dependency and its applications to combining multiple classifiers, Patt. Recogn. Lett. 18(6) (1997) 515-523. (Pubitemid 127424199)
-
(1997)
Pattern Recognition Letters
, vol.18
, Issue.6
, pp. 515-523
-
-
Kang, H.-J.1
Kim, K.2
Kim, J.H.3
-
14
-
-
18644367804
-
Combination of multiple classifiers by minimizing the upper bound of Bayes error rate for unconstrained handwritten numeral recognition
-
H.-J. Kang and S.-W. Lee, Combination of multiple classifiers by minimizing the upper bound of Bayes error rate for unconstrained handwritten numeral recognition, Int. J. Patt. Recogn. Artif. Intell. 19(3) (2005) 395-413.
-
(2005)
Int. J. Patt. Recogn. Artif. Intell.
, vol.19
, Issue.3
, pp. 395-413
-
-
Kang, H.-J.1
Lee, S.-W.2
-
17
-
-
0003388704
-
Increasing classifiers for majority vote in OCR. Theoretical considerations and strategies
-
L. Lam and C. Y. Suen, Increasing classifiers for majority vote in OCR. Theoretical considerations and strategies, in Proc. 4th Int. Workshop on Frontiers in Handwriting Recognition (1994), pp. 245-254.
-
(1994)
Proc. 4th Int. Workshop on Frontiers in Handwriting Recognition
, pp. 245-254
-
-
Lam, L.1
Suen, C.Y.2
-
19
-
-
0030686390
-
Introducing new multiple classifier decision combination topologies: A case study using recognition of handwritten characters
-
A. Rahman and M. Fairhurst, Introducing new multiple classifier decision combination topologies: a case study using recognition of handwritten characters, in Proc. 4th Int. Conf. Document Analysis and Recognition, (1997), pp. 886-891.
-
(1997)
Proc. 4th Int. Conf. Document Analysis and Recognition
, pp. 886-891
-
-
Rahman, A.1
Fairhurst, M.2
-
20
-
-
0022471098
-
Learning representations by Back-propagating errors
-
D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by Back-propagating errors, Nature 323(9) (1986) 533-536.
-
(1986)
Nature
, vol.323
, Issue.9
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
21
-
-
34547397222
-
Chaotic elections! A mathematician looks at voting
-
D. G. Saari, Chaotic elections! A mathematician looks at voting, Amer. Math. Soc. (2001).
-
(2001)
Amer. Math. Soc.
-
-
Saari, D.G.1
-
22
-
-
0003614273
-
-
MIT Press, NY
-
P. Spirtes, C. Glymour and R. Scheines, Causation, Prediction, and Search, 2nd edn. (MIT Press, NY, 2000).
-
(2000)
Causation, Prediction, and Search, 2nd Edn.
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
23
-
-
0026860706
-
Methods of combining multiple classifiers and their applications to handwriting recognition
-
L. Xu, A. Krzyzíak and C. Suen, Methods of combining multiple classifiers and their applications to handwriting recognition, IEEE Trans. Syst. Man Cybern. 22(3) (1992) 418-435.
-
(1992)
IEEE Trans. Syst. Man Cybern.
, vol.22
, Issue.3
, pp. 418-435
-
-
Xu, L.1
Krzyzíak, A.2
Suen, C.3
-
24
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Z.-H. Zhou, J. Wu and W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell. 137 (2002) 239-263.
-
(2002)
Artif. Intell.
, vol.137
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
|