-
2
-
-
84946641509
-
-
10.1080/00268978600101561
-
U. Fabbri and C. Zannoni, Mol. Phys. 58, 763 (1986). 10.1080/ 00268978600101561
-
(1986)
Mol. Phys.
, vol.58
, pp. 763
-
-
Fabbri, U.1
Zannoni, C.2
-
5
-
-
0000890158
-
-
10.1103/PhysRevA.31.1776
-
D. Frenkel and R. Eppenga, Phys. Rev. A 31, 1776 (1985). 10.1103/PhysRevA.31.1776
-
(1985)
Phys. Rev. A
, vol.31
, pp. 1776
-
-
Frenkel, D.1
Eppenga, R.2
-
6
-
-
26544442994
-
-
10.1103/PhysRevB.46.662
-
H. Kunz and G. Zumbach, Phys. Rev. B 46, 662 (1992). 10.1103/PhysRevB.46. 662
-
(1992)
Phys. Rev. B
, vol.46
, pp. 662
-
-
Kunz, H.1
Zumbach, G.2
-
7
-
-
34547255477
-
-
10.1103/PhysRevLett.98.217801
-
R. L. C. Vink, Phys. Rev. Lett. 98, 217801 (2007). 10.1103/PhysRevLett. 98.217801
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 217801
-
-
Vink, R.L.C.1
-
12
-
-
0001646306
-
-
10.1088/0034-4885/60/5/001
-
K. Binder, Rep. Prog. Phys. 60, 487 (1997). 10.1088/0034-4885/60/5/001
-
(1997)
Rep. Prog. Phys.
, vol.60
, pp. 487
-
-
Binder, K.1
-
13
-
-
0345797212
-
-
The exceptions appear to be 10.1063/1.335084;
-
The exceptions appear to be V. Privman and M. Fisher, J. Appl. Phys. 57, 3327 (1985) 10.1063/1.335084
-
(1985)
J. Appl. Phys.
, vol.57
, pp. 3327
-
-
Privman, V.1
Fisher, M.2
-
14
-
-
0002990025
-
-
10.1103/PhysRevB.32.447;
-
M. Fisher and V. Privman, Phys. Rev. B 32, 447 (1985) 10.1103/PhysRevB.32.447
-
(1985)
Phys. Rev. B
, vol.32
, pp. 447
-
-
Fisher, M.1
Privman, V.2
-
20
-
-
0042492825
-
-
10.1103/RevModPhys.54.235
-
F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982). 10.1103/RevModPhys.54.235
-
(1982)
Rev. Mod. Phys.
, vol.54
, pp. 235
-
-
Wu, F.Y.1
-
22
-
-
5544234008
-
-
10.1103/PhysRevLett.68.1734
-
C. Borgs and R. Kotecky, Phys. Rev. Lett. 68, 1734 (1992). 10.1103/PhysRevLett.68.1734
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 1734
-
-
Borgs, C.1
Kotecky, R.2
-
23
-
-
69249098138
-
-
Strictly speaking, Eq. 2 also requires a strong enough first-order transition. For example, in the derivation in Ref., it is assumed that the order-parameter distribution consists of two nonoverlapping Gaussians.
-
Strictly speaking, Eq. 2 also requires a strong enough first-order transition. For example, in the derivation in Ref., it is assumed that the order-parameter distribution consists of two nonoverlapping Gaussians.
-
-
-
-
24
-
-
0013249216
-
-
10.1007/BF01316713
-
K. Vollmayr, J. D. Reger, M. Scheucher, and K. Binder, Z. Phys. B: Condens. Matter 91, 113 (1993). 10.1007/BF01316713
-
(1993)
Z. Phys. B: Condens. Matter
, vol.91
, pp. 113
-
-
Vollmayr, K.1
Reger, J.D.2
Scheucher, M.3
Binder, K.4
-
27
-
-
6644221271
-
-
10.1103/PhysRevLett.86.2050
-
F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001). 10.1103/PhysRevLett.86.2050
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 2050
-
-
Wang, F.1
Landau, D.P.2
-
28
-
-
39749147672
-
-
10.1103/PhysRevE.64.056101
-
F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001). 10.1103/PhysRevE.64.056101
-
(2001)
Phys. Rev. e
, vol.64
, pp. 056101
-
-
Wang, F.1
Landau, D.P.2
-
31
-
-
4043069497
-
-
10.1103/PhysRevLett.90.035701
-
Q. Yan and J. J. de Pablo, Phys. Rev. Lett. 90, 035701 (2003). 10.1103/PhysRevLett.90.035701
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 035701
-
-
Yan, Q.1
De Pablo, J.J.2
-
32
-
-
37649029970
-
-
10.1103/PhysRevE.67.067102
-
B. J. Schulz, K. Binder, M. Müller, and D. P. Landau, Phys. Rev. E 67, 067102 (2003). 10.1103/PhysRevE.67.067102
-
(2003)
Phys. Rev. e
, vol.67
, pp. 067102
-
-
Schulz, B.J.1
Binder, K.2
Müller, M.3
Landau, D.P.4
-
34
-
-
33744650461
-
-
10.1103/PhysRevB.43.3265
-
J. Lee and J. M. Kosterlitz, Phys. Rev. B 43, 3265 (1991). 10.1103/PhysRevB.43.3265
-
(1991)
Phys. Rev. B
, vol.43
, pp. 3265
-
-
Lee, J.1
Kosterlitz, J.M.2
-
35
-
-
24844470014
-
-
10.1103/PhysRevA.25.1699
-
K. Binder, Phys. Rev. A 25, 1699 (1982). 10.1103/PhysRevA.25.1699
-
(1982)
Phys. Rev. A
, vol.25
, pp. 1699
-
-
Binder, K.1
-
36
-
-
0000681394
-
-
10.1103/PhysRevB.47.14757
-
W. Janke, Phys. Rev. B 47, 14757 (1993). 10.1103/PhysRevB.47.14757
-
(1993)
Phys. Rev. B
, vol.47
, pp. 14757
-
-
Janke, W.1
-
37
-
-
69249160767
-
-
For the Potts model, the exponential size dependence has been accurately resolved (Ref.).
-
For the Potts model, the exponential size dependence has been accurately resolved (Ref.).
-
-
-
-
38
-
-
0000869136
-
-
10.1103/PhysRevLett.68.1738
-
C. Borgs and W. Janke, Phys. Rev. Lett. 68, 1738 (1992). 10.1103/PhysRevLett.68.1738
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 1738
-
-
Borgs, C.1
Janke, W.2
-
39
-
-
0002314420
-
-
edited by D. P. Landau, K. K. Mon, and H. B. Schuettler (Springer-Verlag, Berlin
-
W. Janke, in Computer Simulations in Condensed Matter Physics, edited by, D. P. Landau, K. K. Mon, and, H. B. Schuettler, (Springer-Verlag, Berlin, 1994), Vol. VII, p. 29.
-
(1994)
Computer Simulations in Condensed Matter Physics
, vol.7
, pp. 29
-
-
Janke, W.1
|