메뉴 건너뛰기




Volumn , Issue , 2007, Pages 79-90

How to process uncertainty in machine learning?

Author keywords

[No Author keywords available]

Indexed keywords

FUZZY INFERENCE SYSTEMS; MODEL UNCERTAINTIES; NEURO-FUZZY METHODS; PROCESS UNCERTAINTIES;

EID: 69049100869     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (57)
  • 1
    • 33750139117 scopus 로고    scopus 로고
    • Prune-able fuzzy ART neural architecture for robot map learning and navigation in dynamic environments
    • R. Araujo, Prune-able fuzzy ART neural architecture for robot map learning and navigation in dynamic environments, IEEE TNN 17(5):1235-1249, 2006.
    • (2006) IEEE TNN , vol.17 , Issue.5 , pp. 1235-1249
    • Araujo, R.1
  • 2
    • 84886996287 scopus 로고    scopus 로고
    • An experimental study on nonlinear function computation for neural/fuzzy hardware design
    • K. Basterretxea, J.M. Tarela, I. del Campo, G. Bosque, An experimental study on nonlinear function computation for neural/fuzzy hardware design, IEEE TNN 17(5): 266-283, 2007.
    • (2007) IEEE TNN , vol.17 , Issue.5 , pp. 266-283
    • Basterretxea, K.1    Tarela, J.M.2    del Campo, I.3    Bosque, G.4
  • 6
    • 33745242885 scopus 로고    scopus 로고
    • Hierarchical neuro-fuzzy current control for a shunt active power filter
    • K. Cagatay Bayindir, M. Ugras Kumar, M Türmay, Hierarchical neuro-fuzzy current control for a shunt active power filter, Neural Computing & Applications 15(3-4): 223-238, 2006.
    • (2006) Neural Computing & Applications , vol.15 , Issue.3-4 , pp. 223-238
    • Cagatay Bayindir, K.1    Kumar, U.M.2    Türmay, M.3
  • 8
    • 28344449332 scopus 로고    scopus 로고
    • An optimized Takagi-Sugeno type neuro-fuzzy system for modeling robot manipulators
    • A. Chatterjee, K. Watanabe, An optimized Takagi-Sugeno type neuro-fuzzy system for modeling robot manipulators, Neural Computing & Applications 15(1): 55-61, 2006.
    • (2006) Neural Computing & Applications , vol.15 , Issue.1 , pp. 55-61
    • Chatterjee, A.1    Watanabe, K.2
  • 9
    • 0027797773 scopus 로고
    • Fuzzy learning vector quantization
    • IEEE
    • F.-L. Chung, T. Lee, Fuzzy learning vector quantization, In Proc. IJCNN-93, volume III, pages 2739-2742, IEEE, 1993.
    • (1993) Proc. IJCNN-93 , vol.3 , pp. 2739-2742
    • Chung, F.-L.1    Lee, T.2
  • 12
    • 27644501576 scopus 로고    scopus 로고
    • Fuzzy clustering for data time arrays with inlier and outlier time trajectories
    • P. D'Urso, Fuzzy clustering for data time arrays with inlier and outlier time trajectories, IEEE Tans. Fuzzy Syst. 13(5):583-604, 2005.
    • (2005) IEEE Tans. Fuzzy Syst , vol.13 , Issue.5 , pp. 583-604
    • D'Urso, P.1
  • 13
    • 33750268081 scopus 로고    scopus 로고
    • A survey on analysis and design of model-based fuzzy control systems
    • G. Feng, A survey on analysis and design of model-based fuzzy control systems, IEEE Trans. Fuzzy Sys. 14(5):676-697, 2006.
    • (2006) IEEE Trans. Fuzzy Sys , vol.14 , Issue.5 , pp. 676-697
    • Feng, G.1
  • 14
    • 0024701488 scopus 로고
    • Unsupervised Optimal Fuzzy Clustering
    • I. Gath, A.B. Geva. Unsupervised Optimal Fuzzy Clustering. TPAMI, 11(7):773-781, 1989.
    • (1989) TPAMI , vol.11 , Issue.7 , pp. 773-781
    • Gath, I.1    Geva, A.B.2
  • 16
    • 33846092557 scopus 로고    scopus 로고
    • Uncertainty estimation using fuzzy measures for multiclass classification
    • K.E. Graves, R. Nagarajah, Uncertainty estimation using fuzzy measures for multiclass classification, IEEE TNN 18(1):128-140, 2007.
    • (2007) IEEE TNN , vol.18 , Issue.1 , pp. 128-140
    • Graves, K.E.1    Nagarajah, R.2
  • 17
    • 27644485640 scopus 로고    scopus 로고
    • A new convergence proof of fuzzy-c-means
    • L. Gröll, J. Jäkel, A new convergence proof of fuzzy-c-means, IEEE Trans. Fuzzy Syst. 13(5):717-720, 2005.
    • (2005) IEEE Trans. Fuzzy Syst , vol.13 , Issue.5 , pp. 717-720
    • Gröll, L.1    Jäkel, J.2
  • 19
    • 26844514824 scopus 로고    scopus 로고
    • Regularized linear fuzzy clustering and probabilistic PCA mixture models
    • K. Honda, H. Ichihashi, Regularized linear fuzzy clustering and probabilistic PCA mixture models, IEEE Trans. Fuzzy Syst. 13(4):508-516, 2005.
    • (2005) IEEE Trans. Fuzzy Syst , vol.13 , Issue.4 , pp. 508-516
    • Honda, K.1    Ichihashi, H.2
  • 20
    • 17644368545 scopus 로고    scopus 로고
    • A new method for fuzzy information retrieval based on fuzzy hierarchical clustering and fuzzy inference techniques
    • Y.-J. Horng, S.-M. Cheng, Y.-C. Chang, C.-H. Lee, A new method for fuzzy information retrieval based on fuzzy hierarchical clustering and fuzzy inference techniques, IEEE Trans. Fuzzy Syst. 13(2):216-228, 2005.
    • (2005) IEEE Trans. Fuzzy Syst , vol.13 , Issue.2 , pp. 216-228
    • Horng, Y.-J.1    Cheng, S.-M.2    Chang, Y.-C.3    Lee, C.-H.4
  • 21
    • 33745198718 scopus 로고    scopus 로고
    • Fuzzy SVM with a new fuzzy membership function
    • X. Jiang, Z. Yi, J.C. Lv, Fuzzy SVM with a new fuzzy membership function, Neural Computing and Applications 15(3-4):268-276, 2006.
    • (2006) Neural Computing and Applications , vol.15 , Issue.3-4 , pp. 268-276
    • Jiang, X.1    Yi, Z.2    Lv, J.C.3
  • 22
    • 33645833678 scopus 로고    scopus 로고
    • A new approach to fuzzy modeling and nonlinear dynamic systems with noise: Relevance vector learning mechansism
    • J. Kim, Y. Suga, S. Won, A new approach to fuzzy modeling and nonlinear dynamic systems with noise: relevance vector learning mechansism, IEEE Trans. Fyzzy Syst. 14(2): 222-231, 2006.
    • (2006) IEEE Trans. Fyzzy Syst , vol.14 , Issue.2 , pp. 222-231
    • Kim, J.1    Suga, Y.2    Won, S.3
  • 24
    • 0030214781 scopus 로고    scopus 로고
    • The Possibilistic c-Means Algorithm: Insights and Recommendations
    • R. Krishnapuram, J. M. Keller. The Possibilistic c-Means Algorithm: Insights and Recommendations. IEEE Trans.Fuzzy Sst., 4(3):385-393, 1996
    • (1996) IEEE Trans.Fuzzy Sst , vol.4 , Issue.3 , pp. 385-393
    • Krishnapuram, R.1    Keller, J.M.2
  • 26
    • 33645807844 scopus 로고    scopus 로고
    • A min-max approach to fuzzy clustering, estimation, and identification
    • M. Kumar, R. Stoll, N. Stoll, A min-max approach to fuzzy clustering, estimation, and identification, IEEE Trans. Fuzzy Syst. 14(2): 248-262, 2006.
    • (2006) IEEE Trans. Fuzzy Syst , vol.14 , Issue.2 , pp. 248-262
    • Kumar, M.1    Stoll, R.2    Stoll, N.3
  • 27
    • 33947282595 scopus 로고    scopus 로고
    • Design of self-organizing fuzzy neural networks based on genetic algorithms
    • G. Leng, T.M. McGinnity, G. Prasad, Design of self-organizing fuzzy neural networks based on genetic algorithms, IEEE Trans. Fuzzy Systems, 14(6):755-766, 2006.
    • (2006) IEEE Trans. Fuzzy Systems , vol.14 , Issue.6 , pp. 755-766
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 29
    • 33747605322 scopus 로고    scopus 로고
    • Adaptive fuzzy-neural-network control for a DSP-based permanent magnet linear synchronous motor servo drive
    • F.-J. Lin, P.-H- Shen, Adaptive fuzzy-neural-network control for a DSP-based permanent magnet linear synchronous motor servo drive, IEEE Trans. Fuzzy Syst. 14(4):481-495, 2006.
    • (2006) IEEE Trans. Fuzzy Syst , vol.14 , Issue.4 , pp. 481-495
    • Lin, F.-J.1    Shen, P.-H.2
  • 30
    • 33846063260 scopus 로고    scopus 로고
    • Face recognition using total margin-based adaptive fuzzy support vector machines
    • Y.-H. Liu, Y.-T. Chen, Face recognition using total margin-based adaptive fuzzy support vector machines, IEEE TNN 18(1):178-192, 2007.
    • (2007) IEEE TNN , vol.18 , Issue.1 , pp. 178-192
    • Liu, Y.-H.1    Chen, Y.-T.2
  • 31
    • 33846109819 scopus 로고    scopus 로고
    • A method of face recognition based on fuzzy c-means clustering and associated sub-NNs
    • J. Lu, X. Yuan, T. Yahagi, A method of face recognition based on fuzzy c-means clustering and associated sub-NNs, IEEE TNN 18(1): 150-160, 2007.
    • (2007) IEEE TNN , vol.18 , Issue.1 , pp. 150-160
    • Lu, J.1    Yuan, X.2    Yahagi, T.3
  • 32
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: Survey in soft computing framework
    • 748-468
    • S. Mitra, Y. Hayashi, Neuro-fuzzy rule generation: survey in soft computing framework, IEEE TNN 11(3):748-468, 2000.
    • (2000) IEEE TNN , vol.11 , Issue.3
    • Mitra, S.1    Hayashi, Y.2
  • 34
    • 0012080936 scopus 로고
    • Building Neural Fuzzy Controllers with NEFCON-I
    • In R. Kruse, J. Gebhardt und R. Palm
    • D. Nauck. Building Neural Fuzzy Controllers with NEFCON-I. In R. Kruse, J. Gebhardt und R. Palm, eds, Fuzzy Systems in Computer Science, Series Artificial intelligence, 141-151. Vieweg, 1994.
    • (1994) Fuzzy Systems In Computer Science, Series Artificial Intelligence , pp. 141-151
    • Nauck, D.1
  • 35
    • 33144477025 scopus 로고    scopus 로고
    • Genetically optimized fuzzy polynomial neural networks
    • S.-K. Oh, W. Pedrycz, H.-S. Park, Genetically optimized fuzzy polynomial neural networks, IEEE Trans. Fuzzy Syst. 14(1):125-144, 2006.
    • (2006) IEEE Trans. Fuzzy Syst , vol.14 , Issue.1 , pp. 125-144
    • Oh, S.-K.1    Pedrycz, W.2    Park, H.-S.3
  • 36
  • 37
    • 14644444539 scopus 로고    scopus 로고
    • An input-output clustering approach to the synthesis of ANFIS networks
    • M. Panella, A.S. Gallo, An input-output clustering approach to the synthesis of ANFIS networks, IEEE Trans. Fuzzy Syst. 13(1):69-81, 2005.
    • (2005) IEEE Trans. Fuzzy Syst , vol.13 , Issue.1 , pp. 69-81
    • Panella, M.1    Gallo, A.S.2
  • 38
    • 33947271780 scopus 로고    scopus 로고
    • Logic-based fuzzy neurocomputing with unineurons
    • W. Pedrycz, Logic-based fuzzy neurocomputing with unineurons, IEEE Trans. Fuzzy Syst. 14(6): 860-873, 2006.
    • (2006) IEEE Trans. Fuzzy Syst , vol.14 , Issue.6 , pp. 860-873
    • Pedrycz, W.1
  • 39
    • 26844454842 scopus 로고    scopus 로고
    • Adaptive diagnosis in distributed systems
    • I. Rish et al., Adaptive diagnosis in distributed systems, IEEE TNN 16(5):1088-1109, 2005.
    • (2005) IEEE TNN , vol.16 , Issue.5 , pp. 1088-1109
    • Rish, I.1
  • 41
    • 33646518086 scopus 로고    scopus 로고
    • A softmin-based neural model for causal reasoning
    • L.B. Romdhane, A softmin-based neural model for causal reasoning, IEEE TNN 17(3):732-744, 2006.
    • (2006) IEEE TNN , vol.17 , Issue.3 , pp. 732-744
    • Romdhane, L.B.1
  • 42
    • 14644430391 scopus 로고    scopus 로고
    • Control of convergence in a computational fluid dynamics simulation using ANFIS
    • J. Ryoo, Z. Dragojlovic, D.A. Kaminski, Control of convergence in a computational fluid dynamics simulation using ANFIS, IEEE Trans. Fuzzy Syst. 13(1):42-47, 2005.
    • (2005) IEEE Trans. Fuzzy Syst , vol.13 , Issue.1 , pp. 42-47
    • Ryoo, J.1    Dragojlovic, Z.2    Kaminski, D.A.3
  • 44
    • 30344473621 scopus 로고    scopus 로고
    • NFI: A neuro-fuzzy inference method for transductive reasoning
    • Q. Song, N.K. Kasabov, NFI: a neuro-fuzzy inference method for transductive reasoning, IEEE Trans. Fuzzy Syst. 13(6):799-808, 2005.
    • (2005) IEEE Trans. Fuzzy Syst , vol.13 , Issue.6 , pp. 799-808
    • Song, Q.1    Kasabov, N.K.2
  • 45
    • 33947217220 scopus 로고    scopus 로고
    • Implicative fuzzy associative memories
    • P. Sussner, M.E. Valle, Implicative fuzzy associative memories, IEEE Trans. Fuzzy Syst. 14(6):793-807, 2006.
    • (2006) IEEE Trans. Fuzzy Syst , vol.14 , Issue.6 , pp. 793-807
    • Sussner, P.1    Valle, M.E.2
  • 47
    • 33750124516 scopus 로고    scopus 로고
    • Accurate and fast off and inline fuzzy ARTMAP-based image classification with application to genetic abnormality diagnosis
    • B. Vigdor, B. Lerner, Accurate and fast off and inline fuzzy ARTMAP-based image classification with application to genetic abnormality diagnosis, IEEE TNN 17(5):1288-1300, 2006.
    • (2006) IEEE TNN , vol.17 , Issue.5 , pp. 1288-1300
    • Vigdor, B.1    Lerner, B.2
  • 49
    • 33748423524 scopus 로고    scopus 로고
    • Prototype-based fuzzy classification with local relevance for proteomics
    • T. Villmann, F.-M. Schleif, B. Hammer. Prototype-based fuzzy classification with local relevance for proteomics. Neurocomputing 69(16-18):2425-2428, 2006.
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2425-2428
    • Villmann, T.1    Schleif, F.-M.2    Hammer, B.3
  • 53
    • 33144482339 scopus 로고    scopus 로고
    • Stabilizing and tracking control of nonlinear dual-axis invertedpendulum system using fuzzy neural network
    • R.-J. Wai, L.-J. Chang, Stabilizing and tracking control of nonlinear dual-axis invertedpendulum system using fuzzy neural network, IEEE Trans. Fuzzy Syst. 14(1), 145-168, 2006.
    • (2006) IEEE Trans. Fuzzy Syst , vol.14 , Issue.1 , pp. 145-168
    • Wai, R.-J.1    Chang, L.-J.2
  • 54
    • 30344453065 scopus 로고    scopus 로고
    • A new fuzzy support vector machine to evaluate credit risk
    • Y. Wang, S. Wang, K.K. Lai, A new fuzzy support vector machine to evaluate credit risk, IEEE rans. Fuzzy Syst. 13(6):820-831, 2005.
    • (2005) IEEE Rans. Fuzzy Syst , vol.13 , Issue.6 , pp. 820-831
    • Wang, Y.1    Wang, S.2    Lai, K.K.3
  • 56
    • 30344476977 scopus 로고    scopus 로고
    • Fuzzy nonlinear regression with fuzzified radial basis function networks
    • D. Zhang, L.-F. Deng, K.Y. Cai, A. So, Fuzzy nonlinear regression with fuzzified radial basis function networks, IEEE Trans. Fuzzy Syst. 13(6):742-760, 2005.
    • (2005) IEEE Trans. Fuzzy Syst , vol.13 , Issue.6 , pp. 742-760
    • Zhang, D.1    Deng, L.-F.2    Cai, K.Y.3    So, A.4
  • 57
    • 26844433075 scopus 로고    scopus 로고
    • Modeling and optimal control of batch processes using resurrent neuro-fuzzy networks
    • J. Zhang, Modeling and optimal control of batch processes using resurrent neuro-fuzzy networks, IEEE Trans. Fuzzy Syst. 13(4):417-427, 2005.
    • (2005) IEEE Trans. Fuzzy Syst , vol.13 , Issue.4 , pp. 417-427
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.