-
1
-
-
4344699077
-
-
Machczynski, M. C.; Vijgenboom, E.; Samyn, B.; Canters, G. W. Protein Sci. 2004, 13, 2388.
-
(2004)
Protein Sci
, vol.13
, pp. 2388
-
-
Machczynski, M.C.1
Vijgenboom, E.2
Samyn, B.3
Canters, G.W.4
-
2
-
-
0026603624
-
-
Messerschmidt, A.; Ladenstein, R.; Huber, R.; Bolognesi, M.; Avigliano, L.; Petruzzelli, R.; Rossi, A.; Finazziagro, A. J. Mol. Biol. 1992, 224, 179.
-
(1992)
J. Mol. Biol
, vol.224
, pp. 179
-
-
Messerschmidt, A.1
Ladenstein, R.2
Huber, R.3
Bolognesi, M.4
Avigliano, L.5
Petruzzelli, R.6
Rossi, A.7
Finazziagro, A.8
-
5
-
-
84886636496
-
-
Aasa, R.; Branden, R.; Deinum, J.; Malmstrom, B. G.; Reinhammar, B.; Vanngard, T. FEBS Lett. 1976, 61, 115.
-
(1976)
FEBS Lett
, vol.61
, pp. 115
-
-
Aasa, R.1
Branden, R.2
Deinum, J.3
Malmstrom, B.G.4
Reinhammar, B.5
Vanngard, T.6
-
6
-
-
0017118855
-
-
Andreasson, L. E.; Branden, R.; Reinhammar, B. Biochim. Biophys. Acta 1976, 438, 370.
-
(1976)
Biochim. Biophys. Acta
, vol.438
, pp. 370
-
-
Andreasson, L.E.1
Branden, R.2
Reinhammar, B.3
-
7
-
-
0035905357
-
-
Solomon, E. I.; Chen, P.; Metz, M.; Lee, S. K.; Palmer, A. E. Angew. Chem., Int. Ed. 2001, 40, 4570.
-
(2001)
Angew. Chem., Int. Ed
, vol.40
, pp. 4570
-
-
Solomon, E.I.1
Chen, P.2
Metz, M.3
Lee, S.K.4
Palmer, A.E.5
-
8
-
-
0023049397
-
-
Morie-Bebel, M. M.; McMillin, D. R.; Antholine, W. E. Biochem. J. 1986, 235, 415.
-
(1986)
Biochem. J
, vol.235
, pp. 415
-
-
Morie-Bebel, M.M.1
McMillin, D.R.2
Antholine, W.E.3
-
9
-
-
0342881368
-
-
Cole, J. L.; Ballou, D. P.; Solomon, E. I. J. Am. Chem. Soc. 1991, 113, 8544.
-
(1991)
J. Am. Chem. Soc
, vol.113
, pp. 8544
-
-
Cole, J.L.1
Ballou, D.P.2
Solomon, E.I.3
-
10
-
-
69049120038
-
-
The small difference is primarily due to the different circumstances under which the optical and EPR samples had to be prepared and studied. In particular, the time scale of the reaction in the EPR experiment is less well defined because of the freeze, thaw cycles involved
-
The small difference is primarily due to the different circumstances under which the optical and EPR samples had to be prepared and studied. In particular, the time scale of the reaction in the EPR experiment is less well defined because of the freeze - thaw cycles involved.
-
-
-
-
11
-
-
0021093579
-
-
Eaton, S. S.; More, K. M.; Sawant, B. M.; Eaton, G. R. J. Am. Chem. Soc. 1983, 105, 6560.
-
(1983)
J. Am. Chem. Soc
, vol.105
, pp. 6560
-
-
Eaton, S.S.1
More, K.M.2
Sawant, B.M.3
Eaton, G.R.4
-
12
-
-
33749078999
-
-
Michel, F.; Thomas, F.; Hamman, S.; Philouze, C.; Saint-Aman, E.; Pierre, J. L. Eur. J. Inorg. Chem. 2006, 3684.
-
(2006)
Eur. J. Inorg. Chem
, pp. 3684
-
-
Michel, F.1
Thomas, F.2
Hamman, S.3
Philouze, C.4
Saint-Aman, E.5
Pierre, J.L.6
-
13
-
-
0037723404
-
-
Muller, J.; Weyhermuller, T.; Bill, E.; Hildebrandt, P.; Ould-Moussa, L.; Glaser, T.; Wieghardt, K. Angew. Chem, Int. Ed. 1998, 37, 616.
-
(1998)
Angew. Chem, Int. Ed
, vol.37
, pp. 616
-
-
Muller, J.1
Weyhermuller, T.2
Bill, E.3
Hildebrandt, P.4
Ould-Moussa, L.5
Glaser, T.6
Wieghardt, K.7
-
14
-
-
69049100880
-
-
6)(9.1/ν), where ν is the spectrometer frequency (GHz), r is the spin-spin distance (Å), and A ≈ 20 is a numerical constant.
-
6)(9.1/ν), where ν is the spectrometer frequency (GHz), r is the spin-spin distance (Å), and A ≈ 20 is a numerical constant.
-
-
-
-
16
-
-
0011644840
-
-
Boas, J. F.; Dunhill, R. H.; Pilbrow, J. R.; Srivasta, R. C.; Smith, T. D. J. Chem. Soc. A 1969, 94.
-
(1969)
J. Chem. Soc. A
, pp. 94
-
-
Boas, J.F.1
Dunhill, R.H.2
Pilbrow, J.R.3
Srivasta, R.C.4
Smith, T.D.5
-
17
-
-
33845378085
-
-
Eaton, S. S.; Eaton, G. R.; Chang, C. K. J. Am. Chem. Soc. 1985, 107, 3177.
-
(1985)
J. Am. Chem. Soc
, vol.107
, pp. 3177
-
-
Eaton, S.S.1
Eaton, G.R.2
Chang, C.K.3
-
18
-
-
0030882533
-
-
Sokolowski, A.; Leutbecher, H.; Weyhermuller, T.; Schnepf, R.; Both, E.; Bill, E.; Hildebrandt, P.; Wieghardt, K. J. Biol. Inorg. Chem. 1997, 2, 444.
-
(1997)
J. Biol. Inorg. Chem
, vol.2
, pp. 444
-
-
Sokolowski, A.1
Leutbecher, H.2
Weyhermuller, T.3
Schnepf, R.4
Both, E.5
Bill, E.6
Hildebrandt, P.7
Wieghardt, K.8
-
20
-
-
58149349718
-
-
After completion of the manuscript, the recently published X-ray structure of SLAC came to our attention ( Skalova, T.; Dohnalek, J.; Ostergaard, L. H.; Ostergaard, P. R.; Kolenko, P.; Duskova, J.; Stepankova, A.; Hasek, J. J. Mol. Biol. 2009, 385, 1165. ). In this structure, the oxygen of Tyr 108 is located at a distance of 4.6 Å from the T2 Cu at the end of a solvent-accessible channel that leads to the TNC. This residue is an obvious candidate as the source of the radical.
-
After completion of the manuscript, the recently published X-ray structure of SLAC came to our attention ( Skalova, T.; Dohnalek, J.; Ostergaard, L. H.; Ostergaard, P. R.; Kolenko, P.; Duskova, J.; Stepankova, A.; Hasek, J. J. Mol. Biol. 2009, 385, 1165. ). In this structure, the oxygen of Tyr 108 is located at a distance of 4.6 Å from the T2 Cu at the end of a solvent-accessible channel that leads to the TNC. This residue is an obvious candidate as the source of the radical.
-
-
-
|