-
1
-
-
0031272327
-
-
D.M. Chickering and D. Heckerman. Efficient approximations for the marginal likelihood of bayesian networks with hidden variables. Machine Learning, 29:181-212, 1997. Microsoft Research Report, MSR-TR-96-08.
-
D.M. Chickering and D. Heckerman. Efficient approximations for the marginal likelihood of bayesian networks with hidden variables. Machine Learning, 29:181-212, 1997. Microsoft Research Report, MSR-TR-96-08.
-
-
-
-
3
-
-
65349097465
-
Likelihood ratio tests and singularities
-
M. Drton. Likelihood ratio tests and singularities. Ann. Statist., 37(2):979-1012, 2009.
-
(2009)
Ann. Statist
, vol.37
, Issue.2
, pp. 979-1012
-
-
Drton, M.1
-
4
-
-
68949084590
-
Lectures on Algebraic Statistics
-
of, Birkhäuser, Basel
-
M. Drton, B. Sturmfels, and S. Sullivant. Lectures on Algebraic Statistics, volume 39 of Oberwolfach Seminars. Birkhäuser, Basel, 2009.
-
(2009)
Oberwolfach Seminars
, vol.39
-
-
Drton, M.1
Sturmfels, B.2
Sullivant, S.3
-
5
-
-
0000731106
-
Latent class analysis of two-way contingency tables by bayesian methods
-
M. Evans, Z. Gilula, and I. Guttman. Latent class analysis of two-way contingency tables by bayesian methods. Biometrika, 76:557-563, 1989.
-
(1989)
Biometrika
, vol.76
, pp. 557-563
-
-
Evans, M.1
Gilula, Z.2
Guttman, I.3
-
6
-
-
68949095224
-
-
S. Feinberg, P. Hersh, A. Rinaldo, and Y. Zhou. Maximum likelihood estimation in latent class models for contingency table data. arXiv:0709.3535, 2007.
-
S. Feinberg, P. Hersh, A. Rinaldo, and Y. Zhou. Maximum likelihood estimation in latent class models for contingency table data. arXiv:0709.3535, 2007.
-
-
-
-
8
-
-
68949138191
-
-
S. Gao, G. Jiang, and M. Zhu. Solving the 100 swiss francs problem. arXiv:0809.4627, 2008.
-
S. Gao, G. Jiang, and M. Zhu. Solving the 100 swiss francs problem. arXiv:0809.4627, 2008.
-
-
-
-
12
-
-
0000657549
-
A zonotope associated with graphical degree sequences
-
P. Gritzmann and B. Sturmfels, editors, Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift, of, Amer. Math. Soc
-
R. Stanley. A zonotope associated with graphical degree sequences. In P. Gritzmann and B. Sturmfels, editors, Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift, volume 4 of DIMACS Series in Discrete Mathematics, pages 555-570. Amer. Math. Soc., 1991.
-
(1991)
DIMACS Series in Discrete Mathematics
, vol.4
, pp. 555-570
-
-
Stanley, R.1
-
13
-
-
68949119111
-
-
B. Sturmfels. Open problems in algebraic statistics. In M. Putinar and S. Sullivant, editors, Emerging Applications of Algebraic Geometry, 149 of in Mathematics and its Applications, pages 351-364. I.M.A., 2008.
-
B. Sturmfels. Open problems in algebraic statistics. In M. Putinar and S. Sullivant, editors, Emerging Applications of Algebraic Geometry, volume 149 of Volumes in Mathematics and its Applications, pages 351-364. I.M.A., 2008.
-
-
-
-
14
-
-
0035316373
-
Algebraic analysis for nonidentifiable learning machines
-
S. Watanabe. Algebraic analysis for nonidentifiable learning machines. Neural Computation, 13: 899-933, 2001.
-
(2001)
Neural Computation
, vol.13
, pp. 899-933
-
-
Watanabe, S.1
-
15
-
-
0742324924
-
Singularities in mixture models and upper bounds of stochastic complexity
-
S. Watanabe and K. Yamazaki. Singularities in mixture models and upper bounds of stochastic complexity. International Journal of Neural Networks, 16:1029-1038, 2003.
-
(2003)
International Journal of Neural Networks
, vol.16
, pp. 1029-1038
-
-
Watanabe, S.1
Yamazaki, K.2
-
16
-
-
15344345474
-
Newton diagram and stochastic complexity in mixture of binomial distributions
-
Algorithmic Learning Theorem, of, Springer
-
S. Watanabe and K. Yamazaki. Newton diagram and stochastic complexity in mixture of binomial distributions. In Algorithmic Learning Theorem, volume 3244 of Lecture Notes in Computer Science, pages 350-364. Springer, 2004.
-
(2004)
Lecture Notes in Computer Science
, vol.3244
, pp. 350-364
-
-
Watanabe, S.1
Yamazaki, K.2
|