메뉴 건너뛰기




Volumn 34, Issue 2, 2009, Pages 173-193

Predicting EU energy industry excess returns on EU market index via a constrained genetic algorithm

Author keywords

Excess return; Genetic algorithm; Information criteria; Model selection; Penalty function method

Indexed keywords


EID: 68949115855     PISSN: 09277099     EISSN: 15729974     Source Type: Journal    
DOI: 10.1007/s10614-009-9176-4     Document Type: Article
Times cited : (3)

References (44)
  • 1
    • 84981676974 scopus 로고
    • An encompassing test of two models of the balance of trade for Argentina
    • Ahumada H.A. (1985) An encompassing test of two models of the balance of trade for Argentina. Oxford Bulletin of Economics and Statistics 47(1): 51-70
    • (1985) Oxford Bulletin of Economics and Statistics , vol.47 , Issue.1 , pp. 51-70
    • Ahumada, H.A.1
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • In B. N. Petrox & F. Caski (Eds.) Academial Kiado Budapest
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrox & F. Caski (Eds.), Second international symposium on information theory Academial Kiado, Budapest, (pp. 267-281).
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 0036335816 scopus 로고    scopus 로고
    • Stock return predictability and model uncertainty
    • Avramov D. (2002) Stock return predictability and model uncertainty. Journal of Financial Economics 64: 423-458
    • (2002) Journal of Financial Economics , vol.64 , pp. 423-458
    • Avramov, D.1
  • 4
    • 24044451902 scopus 로고    scopus 로고
    • Model selection using information criteria and genetic algorithms
    • Balcombe K.G. (2005) Model selection using information criteria and genetic algorithms. Computational Economics 25: 207-228
    • (2005) Computational Economics , vol.25 , pp. 207-228
    • Balcombe, K.G.1
  • 5
    • 0033409775 scopus 로고    scopus 로고
    • Implementing statistical criteria to select return forecasting models: What do we learn?
    • Bossaerts P., Hillion P. (1999) Implementing statistical criteria to select return forecasting models: What do we learn?. The Review of Financial Studies 12(2): 405-428
    • (1999) The Review of Financial Studies , vol.12 , Issue.2 , pp. 405-428
    • Bossaerts, P.1    Hillion, P.2
  • 6
  • 7
    • 0002996131 scopus 로고    scopus 로고
    • Akaike's information criterion and recent developments in information complexity
    • Bozdogan H. (2000) Akaike's information criterion and recent developments in information complexity. Journal of Mathematical Psychology 44: 62-91
    • (2000) Journal of Mathematical Psychology , vol.44 , pp. 62-91
    • Bozdogan, H.1
  • 8
    • 0347060526 scopus 로고    scopus 로고
    • Constructive data mining: Modeling consumers' expenditure in Venezuela
    • Campos J., Ericsson N.R. (1999) Constructive data mining: Modeling consumers' expenditure in Venezuela. Econometrics Journal 2(2): 226-240
    • (1999) Econometrics Journal , vol.2 , Issue.2 , pp. 226-240
    • Campos, J.1    Ericsson, N.R.2
  • 11
    • 0037411806 scopus 로고    scopus 로고
    • Exploring process data with the use of robust outlier detection algorithms
    • Chiang L.H., Pell R.J., Seasholtz M.B. (2003) Exploring process data with the use of robust outlier detection algorithms. Journal of Process Control 13: 437-449
    • (2003) Journal of Process Control , vol.13 , pp. 437-449
    • Chiang, L.H.1    Pell, R.J.2    Seasholtz, M.B.3
  • 13
    • 0344685284 scopus 로고    scopus 로고
    • Stock return predictability: A Bayesian model selection perspective
    • Cremers K.J.M. (2002) Stock return predictability: A Bayesian model selection perspective. The Review of Financial Studies 15(4): 1223-1249
    • (2002) The Review of Financial Studies , vol.15 , Issue.4 , pp. 1223-1249
    • Cremers, K.J.M.1
  • 15
    • 84952507313 scopus 로고
    • Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features
    • Dorsey R.E., Mayer W. (1995) Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features. Journal of Business and Economic Statistics 13: 53-66
    • (1995) Journal of Business and Economic Statistics , vol.13 , pp. 53-66
    • Dorsey, R.E.1    Mayer, W.2
  • 16
    • 84947302321 scopus 로고    scopus 로고
    • Applications of advanced regression analysis for trading and investment
    • In Wiley Finance Series, Wiley
    • Dunis, C. L., & Williams, M. (2005). Applications of advanced regression analysis for trading and investment. In Applied quantitative methods for trading and investment (pp. 1-40). Wiley Finance Series, Wiley.
    • (2005) Applied Quantitative Methods for Trading and Investment , pp. 1-40
    • Dunis, C.L.1    Williams, M.2
  • 19
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George E.I., McCulloch R.E. (1997) Approaches for Bayesian variable selection. Statistica sinica 7: 339-373
    • (1997) Statistica Sinica , vol.7 , pp. 339-373
    • George, E.I.1    McCulloch, R.E.2
  • 24
    • 68949159166 scopus 로고
    • Comments on Paul and Fung (1991)
    • Hady A., Siminoff J. (1992) Comments on Paul and Fung (1991). Technometrics 34(3): 373-374
    • (1992) Technometrics , vol.34 , Issue.3 , pp. 373-374
    • Hady, A.1    Siminoff, J.2
  • 26
    • 33845466217 scopus 로고    scopus 로고
    • A genetic algorithm approach to find the best regression/econometric model among the candidates
    • Hasheminia H., Niaki S.T.A. (2006) A genetic algorithm approach to find the best regression/econometric model among the candidates. Applied Mathematics and Computation 183: 337-349
    • (2006) Applied Mathematics and Computation , vol.183 , pp. 337-349
    • Hasheminia, H.1    Niaki, S.T.A.2
  • 27
    • 84984063086 scopus 로고
    • Econometric modelling: The "Consumption Function" in retrospect
    • Hendry D.F. (1983) Econometric modelling: The "Consumption Function" in retrospect. Scottish Journal of Political Economy 30(3): 193-220
    • (1983) Scottish Journal of Political Economy , vol.30 , Issue.3 , pp. 193-220
    • Hendry, D.F.1
  • 28
    • 0030194062 scopus 로고    scopus 로고
    • A method for simultaneous variable selection and outlier identification in linear regression
    • Hoeting J.A., Raftery A.E., Madigan D. (1996) A method for simultaneous variable selection and outlier identification in linear regression. Journal of Computational Statistics 22: 251-271
    • (1996) Journal of Computational Statistics , vol.22 , pp. 251-271
    • Hoeting, J.A.1    Raftery, A.E.2    Madigan, D.3
  • 29
    • 0346750898 scopus 로고    scopus 로고
    • Genetic programming prediction of stock prices
    • Kaboudan M.A. (2000) Genetic programming prediction of stock prices. Computational Economics 16: 207-236
    • (2000) Computational Economics , vol.16 , pp. 207-236
    • Kaboudan, M.A.1
  • 32
    • 38249012125 scopus 로고
    • A stable us money demand function, 1874-1975
    • MacDonald R., Taylor M.P. (1992) A stable us money demand function, 1874-1975. Economics Letters 39(2): 191-198
    • (1992) Economics Letters , vol.39 , Issue.2 , pp. 191-198
    • MacDonald, R.1    Taylor, M.P.2
  • 36
    • 84993877356 scopus 로고
    • Predictability of stock returns: Robustness and economic significance
    • Pesaran M.H., Timmermann A. (1995) Predictability of stock returns: Robustness and economic significance. The Journal of Finance 50(4): 1201-1228
    • (1995) The Journal of Finance , vol.50 , Issue.4 , pp. 1201-1228
    • Pesaran, M.H.1    Timmermann, A.2
  • 37
    • 0033963895 scopus 로고    scopus 로고
    • A recursive modelling approach to predicting UK stock returns
    • Pesaran M.H., Timmermann A. (2000) A recursive modelling approach to predicting UK stock returns. The Economic Journal 110: 159-191
    • (2000) The Economic Journal , vol.110 , pp. 159-191
    • Pesaran, M.H.1    Timmermann, A.2
  • 39
    • 39349086653 scopus 로고    scopus 로고
    • Forecasting US employment growth using forecast combining methods
    • Rapach D.E., Strauss J.K. (2008) Forecasting US employment growth using forecast combining methods. Journal of Forecasting 27: 75-93
    • (2008) Journal of Forecasting , vol.27 , pp. 75-93
    • Rapach, D.E.1    Strauss, J.K.2
  • 40
    • 0037889068 scopus 로고    scopus 로고
    • Constrained evolutionary optimization - The penalty function approach
    • In USA: Kluwer Academic Publisher
    • Runarsson, T. P., & Yao, X. (2002). Constrained evolutionary optimization - the penalty function approach. In Evolutionary optimization (Vol. 48, pp. 87-113). USA: Kluwer Academic Publisher.
    • (2002) Evolutionary Optimization , vol.48 , pp. 87-113
    • Runarsson, T.P.1    Yao, X.2
  • 41
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. (1978) Estimating the dimension of a model. Annals of Statistics 6: 461-464
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 43
    • 67649342377 scopus 로고    scopus 로고
    • Forecasting with many predictors
    • In: In Amsterdam: North-Holland
    • Stock, J. H., & Watson, M. W. (2006). In: Forecasting with many predictors. In Handbook of economic forecasting (Vol. 1, pp. 515-554). Amsterdam: North-Holland.
    • (2006) Handbook of Economic Forecasting , vol.1 , pp. 515-554
    • Stock, J.H.1    Watson, M.W.2
  • 44
    • 24944499329 scopus 로고    scopus 로고
    • Genetic algorithms for outlier detection and variable selection in linear regression models
    • Tolvi J. (2004) Genetic algorithms for outlier detection and variable selection in linear regression models. Soft Computing 8: 527-533
    • (2004) Soft Computing , vol.8 , pp. 527-533
    • Tolvi, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.