-
1
-
-
4043170275
-
-
10.1103/PhysRevLett.80.2027
-
D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H. J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 80, 2027 (1998). 10.1103/PhysRevLett.80.2027
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 2027
-
-
Stamper-Kurn, D.M.1
Andrews, M.R.2
Chikkatur, A.P.3
Inouye, S.4
Miesner, H.J.5
Stenger, J.6
Ketterle, W.7
-
2
-
-
68949093137
-
-
| F=2,m=2 and | F=1,m=-1 of R 87 b
-
| F=2,m=2 and | F=1,m=-1 of R 87 b.
-
-
-
-
3
-
-
4444285352
-
-
10.1103/PhysRevLett.78.586
-
C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 78, 586 (1997). 10.1103/PhysRevLett.78.586
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 586
-
-
Myatt, C.J.1
Burt, E.A.2
Ghrist, R.W.3
Cornell, E.A.4
Wieman, C.E.5
-
4
-
-
0032534365
-
-
10.1209/epl/i1998-00528-3
-
M. Zielonkowski, Europhys. Lett. 44, 700 (1998). 10.1209/epl/i1998-00528- 3
-
(1998)
Europhys. Lett.
, vol.44
, pp. 700
-
-
Zielonkowski, M.1
-
5
-
-
33645785439
-
-
10.1038/nphys153
-
M.-S. Chang, Nat. Phys. 1, 111 (2005). 10.1038/nphys153
-
(2005)
Nat. Phys.
, vol.1
, pp. 111
-
-
M.-S. Chang1
-
6
-
-
1442307158
-
-
10.1103/PhysRevLett.92.040402
-
H. Schmaljohann, M. Erhard, J. Kronjager, M. Kottke, S. van Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock, Phys. Rev. Lett. 92, 040402 (2004). 10.1103/PhysRevLett.92.040402
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 040402
-
-
Schmaljohann, H.1
Erhard, M.2
Kronjager, J.3
Kottke, M.4
Van Staa, S.5
Cacciapuoti, L.6
Arlt, J.J.7
Bongs, K.8
Sengstock, K.9
-
7
-
-
4043165940
-
-
10.1103/PhysRevLett.81.742
-
T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998). 10.1103/PhysRevLett.81.742
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 742
-
-
T.-L. Ho1
-
9
-
-
2542441991
-
-
10.1103/PhysRevLett.92.140403
-
M.-S. Chang, C. D. Hamley, M. D. Barrett, J. A. Sauer, K. M. Fortier, W. Zhang, L. You, and M. S. Chapman, Phys. Rev. Lett. 92, 140403 (2004). 10.1103/PhysRevLett.92.140403
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 140403
-
-
M.-S. Chang1
Hamley, C.D.2
Barrett, M.D.3
Sauer, J.A.4
Fortier, K.M.5
Zhang, W.6
You, L.7
Chapman, M.S.8
-
10
-
-
0031695270
-
-
10.1007/s100530050130
-
I. Maréchal, Eur. Phys. J. D 2, 195 (1998). 10.1007/s100530050130
-
(1998)
Eur. Phys. J. D
, vol.2
, pp. 195
-
-
I. Maréchal1
-
12
-
-
0942288922
-
-
10.1103/PhysRevLett.91.240408
-
G. Cennini, G. Ritt, C. Geckeler, and M. Weitz, Phys. Rev. Lett. 91, 240408 (2003). 10.1103/PhysRevLett.91.240408
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 240408
-
-
Cennini, G.1
Ritt, G.2
Geckeler, C.3
Weitz, M.4
-
13
-
-
3242879474
-
-
10.1088/0143-0807/25/4/009
-
E. I. Butikov, Eur. J. Phys. 25, 535 (2004). 10.1088/0143-0807/25/4/009
-
(2004)
Eur. J. Phys.
, vol.25
, pp. 535
-
-
Butikov, E.I.1
-
15
-
-
4243946339
-
-
The evaporation ramp P (t) = Pi / (1+Ft/ tf) β is used where F=-1+ (Pi / Pf) 1/β. Pi and Pf are the initial and final laser powers, respectively, tf is the desired ramping time, and β controls the slope of the ramp (β3). This ramp is modified from that given by 10.1103/PhysRevA.64.051403
-
The evaporation ramp P (t) = Pi / (1+Ft/ tf) β is used where F=-1+ (Pi / Pf) 1/β. Pi and Pf are the initial and final laser powers, respectively, tf is the desired ramping time, and β controls the slope of the ramp (β3). This ramp is modified from that given by K. M. O'Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, Phys. Rev. A 64, 051403 (R) (2001), in that it ends at a predetermined power, P (tf) = Pf. 10.1103/PhysRevA.64.051403
-
(2001)
Phys. Rev. A
, vol.64
, pp. 051403
-
-
O'Hara, K.M.1
Gehm, M.E.2
Granade, S.R.3
Thomas, J.E.4
-
16
-
-
68949087487
-
-
At Pf =180mW the trap depth measured along the horizontal axes is U0 =5.5μK. Along the gravitational acceleration the trap depth is reduced to =1.3μK
-
At Pf =180mW the trap depth measured along the horizontal axes is U0 =5.5μK. Along the gravitational acceleration the trap depth is reduced to =1.3μK.
-
-
-
-
17
-
-
68949089362
-
-
http://frhewww.physik.uni-freiburg.de
-
-
-
-
18
-
-
0034226816
-
-
10.1103/PhysRevA.62.013406
-
S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, Phys. Rev. A 62, 013406 (2000). 10.1103/PhysRevA.62.013406
-
(2000)
Phys. Rev. A
, vol.62
, pp. 013406
-
-
Kuppens, S.J.M.1
Corwin, K.L.2
Miller, K.W.3
Chupp, T.E.4
Wieman, C.E.5
-
20
-
-
68949109214
-
-
The geometry-related dimensionless constants are c1 =+3, c2 =-22, and c3 =+2. For coil currents of 12 and 16.5 A, respectively, we have c0 =24nK/μm.
-
The geometry-related dimensionless constants are c1 =+3, c2 =-22, and c3 =+2. For coil currents of 12 and 16.5 A, respectively, we have c0 =24nK/μm.
-
-
-
-
21
-
-
68949118829
-
-
D. A. Steck, Rubidium 87 D Line Data, Los Alamos, 2003, http://steck.us/alkalidata
-
(2003)
-
-
Steck, D.A.1
|