메뉴 건너뛰기




Volumn 33, Issue 1, 2009, Pages 163-178

New supervised multi layer feed forward neural network model to accelerate classification with high accuracy

Author keywords

Epoch; Pre training; Preprocessing; SMFFNN; SMNN; Training

Indexed keywords


EID: 68649125304     PISSN: 1450216X     EISSN: 1450202X     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (18)

References (34)
  • 2
    • 0031354418 scopus 로고    scopus 로고
    • CLIP3: Cover learning using integer programming
    • (1997)
    • Cios, K. J., Wedding, D. K. and Liu N., 1997. CLIP3: Cover learning using integer programming, Kybernetes 26 (4-5) (1997) 513-536.
    • (1997) Kybernetes , vol.26 , Issue.4-5 , pp. 513-536
    • Cios, K.J.1    Wedding, D.K.2    Liu, N.3
  • 3
    • 3543030450 scopus 로고
    • An Algorithm which Learns Multiple Covers via Integer Linear Programming. Part I--The CLILP2 Algorithm
    • (The Norbert Wiener Outstanding Paper Award)
    • Cios, K.J. and Liu, N. 1995. An Algorithm which Learns Multiple Covers via Integer Linear Programming. Part I--The CLILP2 Algorithm, Kybernetes, 24:2, pp. 29-50 (The Norbert Wiener Outstanding Paper Award).
    • (1995) Kybernetes , vol.24 , Issue.2 , pp. 29-50
    • Cios, K.J.1    Liu, N.2
  • 5
    • 0003555184 scopus 로고
    • Nearest neighbor (NN) norms: NN pattern classification techniques
    • Press, Los Alamitos, CA
    • Dasarathy, B.V. 1991. Nearest neighbor (NN) norms: NN pattern classification techniques. IEEE Comput. Soc. Press, Los Alamitos, CA.
    • (1991) IEEE Comput. Soc.
    • Dasarathy, B.V.1
  • 6
    • 0000362092 scopus 로고
    • Non-linear dimensionality reduction
    • San Mateo, CA, USA. Morgan Kaufmann
    • DeMers, D. and Cottrell, G. 1993. Non-linear dimensionality reduction. In Advances in Neural Information Processing Systems, volume 5, pages 580-587, San Mateo, CA, USA. Morgan Kaufmann.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 580-587
    • DeMers, D.1    Cottrell, G.2
  • 8
    • 0026897995 scopus 로고
    • Statistically Controlled Activation Weight initialization (SCAWI)
    • Drago, G.P. and Ridella, S. 1992. Statistically Controlled Activation Weight initialization (SCAWI). IEEE Transactions. on Neural Networks, vol. 3, no. 4, pp. 627-631.
    • (1992) IEEE Transactions. on Neural Networks , vol.3 , Issue.4 , pp. 627-631
    • Drago, G.P.1    Ridella, S.2
  • 9
    • 33746025958 scopus 로고    scopus 로고
    • Weight Initialization Methods for Multilayer feed forward
    • Universidad Jaume I, Campus de Riu Sec, Edificio TI, Departamento de Informática, 12080 Castellón, Spain, 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3
    • Fernández-Redondo, M. and Hernández-Espinosa C. 2001. Weight Initialization Methods for Multilayer feed forward. Universidad Jaume I, Campus de Riu Sec, Edificio TI, Departamento de Informática, 12080 Castellón, Spain. ESANN'2001 proceedings - European Symposium on Artificial Neural Networks. Bruges (Belgium), 25-27 April 2001, D-Facto public., ISBN 2-930307-01-3, pp. 119-124.
    • (2001) ESANN'2001 proceedings - European Symposium on Artificial Neural Networks. Bruges (Belgium) , pp. 119-124
    • Fernández-Redondo, M.1    Hernández-Espinosa, C.2
  • 11
    • 0024866495 scopus 로고
    • On approximate realization of continuous mappings by neural networks
    • Funahash, K. 1989. On approximate realization of continuous mappings by neural networks, Neural Networks 2. 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahash, K.1
  • 14
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the Dimensionality of Data with Neural Networks
    • Figs. S1 to S5 Matlab Code. 10.1126/science. 1127647.June
    • Hinton, G.E. and Salakhutdinov, R.R. 2006. Reducing the Dimensionality of Data with Neural Networks. Materials and Methods. Figs. S1 to S5 Matlab Code. 10.1126/science. 1127647.June. www.sciencemag.org/cgi/content/full/313/5786/504/DC1
    • (2006) Materials and Methods
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 19
    • 67649623086 scopus 로고    scopus 로고
    • Evolving Hyper networks for Pattern Classification
    • Digital Object Identifier 10.1109/CEC
    • Kim, J.K. and Zhang, B.T. 2007. Evolving Hyper networks for Pattern Classification. In Proceedings of IEEE Congress on Evolutionary Computation. Page(s):1856 - 1862 Digital Object Identifier 10.1109/CEC.
    • (2007) Proceedings of IEEE Congress on Evolutionary Computation , pp. 1856-1862
    • Kim, J.K.1    Zhang, B.T.2
  • 20
    • 85069244112 scopus 로고    scopus 로고
    • Department of Computer Science and Engineering, University of Colorado at Denver, Campus Box 109, P.O. Box 173364, Denver, CO 80217-3364, USA. Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada, Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA. University of Colorado Health Sciences Center, Denver, CO 80262, USA. 4cData, Golden, CO 80401, USA. Received 8 May 2002; accepted 17 March 2003
    • Krzysztof J., Cios and Lukasz A.K. 2003. CLIP4: Hybrid inductive machine learning algorithm that generates inequality rules. Department of Computer Science and Engineering, University of Colorado at Denver, Campus Box 109, P.O. Box 173364, Denver, CO 80217-3364, USA. Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada, Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA. University of Colorado Health Sciences Center, Denver, CO 80262, USA. 4cData, Golden, CO 80401, USA. Received 8 May 2002; accepted 17 March 2003.
    • (2003) CLIP4: Hybrid inductive machine learning algorithm that generates inequality rules
    • Krzysztof, J.1    Cios2    Lukasz, A.K.3
  • 22
    • 0001857994 scopus 로고    scopus 로고
    • Efficient Back Prop
    • In Orr, G. B. and. Muller, K.-R., (Eds.), (G. Orr and Muller K., eds.
    • LeCun, Y., Bottou, L., Orr, G. and Muller, K. 1998. Efficient Back Prop. In Orr, G. B. and. Muller, K.-R., (Eds.), Neural Networks: Tricks of the trade, (G. Orr and Muller K., eds.).
    • (1998) Neural Networks: Tricks of the Trade
    • LeCun, Y.1    Bottou, L.2    Orr, G.3    Muller, K.4
  • 23
    • 0038171506 scopus 로고    scopus 로고
    • February 26. Unpublished. T.Z.1-4244-1340-0/07/2007 IEEE
    • Lindsay, S. 2002. A tutorial on Principal Components Analysis. February 26. Unpublished. T.Z.1-4244-1340-0/07/2007 IEEE URL://http://www.ics.uci.edu/mlearn/MLRepository.html
    • (2002) A Tutorial on Principal Components Analysis
    • Lindsay, S.1
  • 24
    • 84942740690 scopus 로고    scopus 로고
    • Computer Science Department, Carnegie Mellon University, University of Wisconsin-Madison. Elsevier Science Publishers B. V. Amsterdam, The Netherlands, The Netherlands. ISSN: 0167-739X
    • Mark W. Craven and Jude W. Shavlik, 1997. Using Neural Networks for Data Mining. Computer Science Department, Carnegie Mellon University, University of Wisconsin-Madison. Elsevier Science Publishers B. V. Amsterdam, The Netherlands, The Netherlands. ISSN: 0167-739X.
    • (1997) Using Neural Networks for Data Mining
    • Craven, M.W.1    Shavlik, J.W.2
  • 27
    • 0011814255 scopus 로고
    • The analysis of pyrolysis mass spectra using artificial neural networks. Individual input scaling leads to rapid learning
    • International Neural Network Society San Diego, California, I-318 - I-323
    • Neal, M.J., Goodacre, R. and Kell, D.B. 1994. The analysis of pyrolysis mass spectra using artificial neural networks. Individual input scaling leads to rapid learning. In Proceedings of the World Congress on Neural Networks. International Neural Network Society San Diego, California, I-318 - I-323.
    • (1994) Proceedings of the World Congress on Neural Networks
    • Neal, M.J.1    Goodacre, R.2    Kell, D.B.3
  • 28
    • 85069252300 scopus 로고    scopus 로고
    • Neural Networks. Department of Computer Science. University of Hartford West Hartford, CT 06117
    • Russell, I.F. 2007. Neural Networks. Department of Computer Science. University of Hartford West Hartford, CT 06117. Journal of Undergraduate Mathematics and its Applications, Vol 14, No 1.
    • (2007) Journal of Undergraduate Mathematics and its Applications , vol.14 , Issue.1
    • Russell, I.F.1
  • 30
  • 31
    • 33745952381 scopus 로고    scopus 로고
    • Data-Dependent Kernels for High-Dimensional Data Classification
    • Montreal, Canada, July 31- August 4, 2005.0-7803-9048-2/05/2005 IEEE. Department of Computer Science The Hong Kong University of Science and Technology Clear Water Bay Hong Kong
    • Wang, J., Kwok, J.T., Shen, H.C. and Quan, L. 2005. Data-Dependent Kernels for High-Dimensional Data Classification. In Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, July 31- August 4, 2005.0-7803-9048-2/05/2005 IEEE. Department of Computer Science The Hong Kong University of Science and Technology Clear Water Bay Hong Kong.
    • (2005) Proceedings of International Joint Conference on Neural Networks
    • Wang, J.1    Kwok, J.T.2    Shen, H.C.3    Quan, L.4
  • 33
    • 85069252008 scopus 로고    scopus 로고
    • Department of Electrical & Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA. Department of Computer Science and Engineering, Intelligent Information Processing Laboratory, Fudan University, People's Republic of China. Accepted 31 October 2003
    • Zhang, X.M., Chen, Y.Q., Ansari, N. and Shi, Y.Q. 2003. Mini-max initialization for function Approximation. Department of Electrical & Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA. Department of Computer Science and Engineering, Intelligent Information Processing Laboratory, Fudan University, People's Republic of China. Accepted 31 October 2003.
    • (2003) Mini-max Initialization for Function Approximation
    • Zhang, X.M.1    Chen, Y.Q.2    Ansari, N.3    Shi, Y.Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.