메뉴 건너뛰기




Volumn 131, Issue 4, 2009, Pages

Infrared-induced coherent vibration of a hydrogen-bonded system: Effects of mechanical and electrical anharmonic couplings

Author keywords

[No Author keywords available]

Indexed keywords

ABSORPTION INTENSITY; ANHARMONIC COUPLINGS; ANHARMONICITIES; BONDED MOLECULE; COHERENT VIBRATIONS; COMBINATION BANDS; HYDROGEN BONDED SYSTEMS; HYDROGEN-BOND; LOW FREQUENCY; LOW-FREQUENCY MODES; MECHANICAL ANHARMONICITY; PROBE SPECTROSCOPY; QUINIZARIN; STRETCHING MODES; TIME RESOLUTION; TRANSITION MOMENTS; VIBRATIONAL ANALYSIS; VIBRATIONAL COHERENCES;

EID: 68249113077     PISSN: 00219606     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.3181777     Document Type: Article
Times cited : (22)

References (48)
  • 11
    • 0037470212 scopus 로고    scopus 로고
    • Ultrafast coherent nuclear motions of hydrogen bonded carboxylic acid dimers
    • DOI 10.1016/S0009-2614(03)00023-X, PII S000926140300023X
    • K. Heyne, N. Huse, E. T. J. Nibbering, and T. Elsaesser, Chem. Phys. Lett. 0009-2614 369, 591 (2003). 10.1016/S0009-2614(03)00023-X (Pubitemid 36198382)
    • (2003) Chemical Physics Letters , vol.369 , Issue.5-6 , pp. 591-596
    • Heyne, K.1    Nibbering, E.T.J.2    Elsaesser, T.3
  • 12
    • 33750934763 scopus 로고    scopus 로고
    • Ultrafast dynamics of vibrational N-H stretching excitations in the 7-azaindole dimer
    • DOI 10.1016/j.cplett.2006.10.084, PII S0009261406015867
    • J. R. Dwyer, J. Dreyer, E. T. J. Nibbering, and T. Elsaesser, Chem. Phys. Lett. 0009-2614 432, 146 (2006). 10.1016/j.cplett.2006.10.084 (Pubitemid 44737466)
    • (2006) Chemical Physics Letters , vol.432 , Issue.1-3 , pp. 146-151
    • Dwyer, J.R.1    Dreyer, J.2    Nibbering, E.T.J.3    Elsaesser, T.4
  • 15
    • 18844393703 scopus 로고    scopus 로고
    • 0021-9606,. 10.1063/1.1891727
    • J. Dreyer, J. Chem. Phys. 0021-9606 122, 184306 (2005). 10.1063/1.1891727
    • (2005) J. Chem. Phys. , vol.122 , pp. 184306
    • Dreyer, J.1
  • 16
    • 0000945924 scopus 로고    scopus 로고
    • 0009-2614,. 10.1016/S0009-2614(00)00822-8
    • S. Takeuchi and T. Tahara, Chem. Phys. Lett. 0009-2614 326, 430 (2000). 10.1016/S0009-2614(00)00822-8
    • (2000) Chem. Phys. Lett. , vol.326 , pp. 430
    • Takeuchi, S.1    Tahara, T.2
  • 17
    • 1842530867 scopus 로고    scopus 로고
    • 0021-9606,. 10.1063/1.1645778
    • S. Takeuchi and T. Tahara, J. Chem. Phys. 0021-9606 120, 4768 (2004). 10.1063/1.1645778
    • (2004) J. Chem. Phys. , vol.120 , pp. 4768
    • Takeuchi, S.1    Tahara, T.2
  • 18
    • 0000720865 scopus 로고    scopus 로고
    • 0146-9592,. 10.1364/OL.25.000180
    • J. Piel, M. Beutter, and E. Riedle, Opt. Lett. 0146-9592 25, 180 (2000). 10.1364/OL.25.000180
    • (2000) Opt. Lett. , vol.25 , pp. 180
    • Piel, J.1    Beutter, M.2    Riedle, E.3
  • 19
  • 22
    • 68249105911 scopus 로고    scopus 로고
    • GAUSSIAN 03, Gaussian, Inc., Wallingford, CT.
    • M. J. Frisch, G. W. Trucks, H. B. Schlegel, GAUSSIAN 03, Gaussian, Inc., Wallingford, CT, 2004.
    • (2004)
    • Frisch, M.J.1    Trucks, G.W.2    Schlegel, H.B.3
  • 24
    • 0000899804 scopus 로고
    • 0009-2614,. 10.1016/0009-2614(89)87263-X
    • W. Schneider and W. Thiel, Chem. Phys. Lett. 0009-2614 157, 367 (1989). 10.1016/0009-2614(89)87263-X
    • (1989) Chem. Phys. Lett. , vol.157 , pp. 367
    • Schneider, W.1    Thiel, W.2
  • 25
    • 0031564821 scopus 로고    scopus 로고
    • 0009-2614,. 10.1016/S0009-2614(97)00552-6
    • S. Dressler and W. Thiel, Chem. Phys. Lett. 0009-2614 273, 71 (1997). 10.1016/S0009-2614(97)00552-6
    • (1997) Chem. Phys. Lett. , vol.273 , pp. 71
    • Dressler, S.1    Thiel, W.2
  • 27
    • 0013567978 scopus 로고
    • 0096-8250,. 10.1103/PhysRev.48.63
    • R. W. Wood and D. H. Rank, Phys. Rev. 0096-8250 48, 63 (1935). 10.1103/PhysRev.48.63
    • (1935) Phys. Rev. , vol.48 , pp. 63
    • Wood, R.W.1    Rank, D.H.2
  • 32
    • 36749104864 scopus 로고
    • 0021-9606,. 10.1063/1.435901
    • E. Marechal and S. Bratos, J. Chem. Phys. 0021-9606 68, 1825 (1978). 10.1063/1.435901
    • (1978) J. Chem. Phys. , vol.68 , pp. 1825
    • Marechal, E.1    Bratos, S.2
  • 33
    • 0037159057 scopus 로고    scopus 로고
    • Vibrational interactions of acetonitrile: Doubly vibrationally resonant IR-IR-visible four-wave-mixing spectroscopy
    • DOI 10.1063/1.1501129
    • K. Kwak, S. Cha, M. Cho, and J. C. Wright, J. Chem. Phys. 0021-9606 117, 5675 (2002). 10.1063/1.1501129 (Pubitemid 35170670)
    • (2002) Journal of Chemical Physics , vol.117 , Issue.12 , pp. 5675-5687
    • Kwak, K.1    Cha, S.2    Cho, M.3    Wright, J.C.4
  • 34
    • 0037194914 scopus 로고    scopus 로고
    • Dissipative laser-driven hydrogen-bond dynamics in deuterated o-phthalic acid monomethylester
    • DOI 10.1021/jp0209852
    • O. Kühn, J. Phys. Chem. A 1089-5639 106, 7671 (2002). 10.1021/jp0209852 (Pubitemid 35382508)
    • (2002) Journal of Physical Chemistry A , vol.106 , Issue.34 , pp. 7671-7679
    • Kuhn, O.1
  • 35
    • 0037034416 scopus 로고    scopus 로고
    • Multiconfiguration time-dependent hartree dynamics on an ab initio reaction surface: Ultrafast laser-driven proton motion in phthalic acid monomethylester
    • DOI 10.1021/jp013652y
    • H. Naundorf, G. A. Worth, H. -D. Meyer, and O. Kühn, J. Phys. Chem. A 1089-5639 106, 719 (2002). 10.1021/jp013652y (Pubitemid 35264086)
    • (2002) Journal of Physical Chemistry A , vol.106 , Issue.5 , pp. 719-724
    • Naundorf, H.1    Worth, G.A.2    Meyer, H.-D.3    Kuhn, O.4
  • 37
    • 0035870565 scopus 로고    scopus 로고
    • Investigations of ultrafast nuclear response induced by resonant and nonresonant laser pulses
    • DOI 10.1063/1.1356011
    • A. T. N. Kumar, F. Rosca, A. Widom, and P. M. Champion, J. Chem. Phys. 0021-9606 114, 6795 (2001). 10.1063/1.1356011 (Pubitemid 32419555)
    • (2001) Journal of Chemical Physics , vol.114 , Issue.15 , pp. 6795-6815
    • Kumar, A.T.N.1    Rosca, F.2    Widom, A.3    Champion, P.M.4
  • 38
    • 0027760704 scopus 로고
    • 0740-3224,. 10.1364/JOSAB.10.002263
    • Y. Tanimura and S. Mukamel, J. Opt. Soc. Am. B 0740-3224 10, 2263 (1993). 10.1364/JOSAB.10.002263
    • (1993) J. Opt. Soc. Am. B , vol.10 , pp. 2263
    • Tanimura, Y.1    Mukamel, S.2
  • 40
    • 68249104277 scopus 로고    scopus 로고
    • The displacement of the potential between vOH =0 and vOH =1 levels is readily explained as follows. Taking account of the mechanical anharmonic coupling shown in Eq., the two-dimensional vibrational Hamiltonian is represented as H= Tlow + (1/2) klow Q low 2 + TOH + (1/2) k OH 0 Q OH 2 + (1/2) ( kOH / Qlow) Qlow Q OH 2 = Tlow + (1/2) klow Q low 2 + TOH + (1/2) kOH [Qlow] Q OH 2. Thus, the force constant kOH becomes Qlow -dependent (kOH [Qlow] = k OH 0 + kOH / Qlow × Qlow) if the kOH / Qlow factor is nonzero. Because the vibration of the OH-stretching mode is much faster than the low-frequency mode, we can take the partial average of H with respect to only QOH, 〈 vOH H vOH 〉 = Tlow + (1/2) klow Q low 2 + (vOH + (1/2)) kOH [Qlow] = Tlow + (1/2) klow Q low 2 + (vOH + (1/2)) (k OH 0 + ( kOH / Qlow) Qlow). Here, vOH is the quantum number of the OH-stretching vibration. Note that k=h in the current coordinate system [Eq.]. The remaining part of H contains
    • The displacement of the potential between vOH =0 and vOH =1 levels is readily explained as follows. Taking account of the mechanical anharmonic coupling shown in Eq., the two-dimensional vibrational Hamiltonian is represented as H= Tlow + (1/2) klow Q low 2 + TOH + (1/2) k OH 0 Q OH 2 + (1/2) ( kOH / Qlow) Qlow Q OH 2 = Tlow + (1/2) klow Q low 2 + TOH + (1/2) kOH [Qlow] Q OH 2. Thus, the force constant kOH becomes Qlow -dependent (kOH [Qlow] = k OH 0 + kOH / Qlow × Qlow) if the kOH / Qlow factor is nonzero. Because the vibration of the OH-stretching mode is much faster than the low-frequency mode, we can take the partial average of H with respect to only QOH, 〈 vOH H vOH 〉 = Tlow + (1/2) klow Q low 2 + (vOH + (1/2)) kOH [Qlow] = Tlow + (1/2) klow Q low 2 + (vOH + (1/2)) (k OH 0 + ( kOH / Qlow) Qlow). Here, vOH is the quantum number of the OH-stretching vibration. Note that k=h in the current coordinate system [Eq.]. The remaining part of H contains only Qlow. Then, the Hamiltonian of Qlow for vOH =0 and vOH =1 levels can be obtained as Hv (OH) =0 [Qlow] = Tlow + (1/2) klow Q low 2 + (1/2) (k OH 0 + ( kOH / Qlow) Qlow) = Tlow + (1/2) klow (Qlow + (1/2 klow) ( kOH / Qlow)) 2 + (1/2) k OH 0-(1/8 klow) ( kOH / Qlow) 2, Hv (OH) =1 [Qlow] = Tlow +(1/2) klow Q low 2 +(3/2) (k OH 0 +( kOH / Qlow) Qlow) = Tlow +(1/2) klow (Qlow + (3/2 klow) ( kOH / Qlow)) 2 +(3/2) k OH 0 -(9/8 klow) ( kOH / Qlow) 2. These expressions clearly show that the potential curves of vOH =1 is displaced from that of vOH =0 by -1/ klow × kOH / Qlow.
  • 41
    • 68249103718 scopus 로고    scopus 로고
    • In Fig., the transition intensity between two potential curves is monotonically increasing as a function of Qlow. In the discussion in the electronically resonant spectroscopy, the Herzberg-Teller-type coupling is usually considered for optically forbidden transitions, where the transition intensity becomes zero at the equilibrium position (Q=0). In the present case for IR-pump-visible-probe spectroscopy, however, the OH stretch IR transition is optically allowed, so that it has sizable intensity (μ0 OH) at Qlow =0. Thus, the magnitude of the total transition moment is represented as μOH μ0 OH + μOH / Qlow × Qlow , and the sum of μ0 OH and the Q -dependent contributions change linearly at around Qlow =0.
    • In Fig., the transition intensity between two potential curves is monotonically increasing as a function of Qlow. In the discussion in the electronically resonant spectroscopy, the Herzberg-Teller-type coupling is usually considered for optically forbidden transitions, where the transition intensity becomes zero at the equilibrium position (Q=0). In the present case for IR-pump-visible-probe spectroscopy, however, the OH stretch IR transition is optically allowed, so that it has sizable intensity (μ0 OH) at Qlow =0. Thus, the magnitude of the total transition moment is represented as μOH μ0 OH + μOH / Qlow × Qlow, and the sum of μ0 OH and the Q -dependent contributions change linearly at around Qlow =0.
  • 42
    • 0030596222 scopus 로고    scopus 로고
    • Vibrational coherence in ultrafast excited state proton transfer
    • DOI 10.1016/S0009-2614(96)01268-7, PII S0009261496012687
    • C. Chudoba, E. Riedle, M. Pfeiffer, and T. Elsaesser, Chem. Phys. Lett. 0009-2614 263, 622 (1996). 10.1016/S0009-2614(96)01268-7 (Pubitemid 126163633)
    • (1996) Chemical Physics Letters , vol.263 , Issue.5 , pp. 622-628
    • Chudoba, C.1    Riedle, E.2    Pfeiffer, M.3    Elsaesser, T.4
  • 44
    • 0033691033 scopus 로고    scopus 로고
    • Ultrafast excited-state proton transfer and subsequent coherent skeletal motion of 2-(2′-hydroxyphenyl)benzothiazole
    • DOI 10.1063/1.481711
    • S. Lochbrunner, A. J. Wurzer, and E. Riedle, J. Chem. Phys. 0021-9606 112, 10699 (2000). 10.1063/1.481711 (Pubitemid 30876089)
    • (2000) Journal of Chemical Physics , vol.112 , Issue.24 , pp. 10699-10702
    • Lochbrunner, S.1    Wurzer, A.J.2    Riedle, E.3
  • 45
    • 0035849245 scopus 로고    scopus 로고
    • Wave-packet-assisted decomposition of femtosecond transient ultraviolet-visible absorption spectra: Application to excited-state intramolecular proton transfer in solution
    • DOI 10.1021/jp003298o
    • N. P. Ernsting, S. A. Kovalenko, T. Senyushkina, J. Saam, and V. Farztdinov, J. Phys. Chem. A 1089-5639 105, 3443 (2001). 10.1021/jp003298o (Pubitemid 35377882)
    • (2001) Journal of Physical Chemistry A , vol.105 , Issue.14 , pp. 3443-3453
    • Ernsting, N.P.1    Kovalenko, S.A.2    Senyushkina, T.3    Saam, J.4    Farztdinov, V.5
  • 48
    • 28144454235 scopus 로고    scopus 로고
    • 1089-5639,. 10.1021/jp0519013
    • S. Takeuchi and T. Tahara, J. Phys. Chem. A 1089-5639 109, 10199 (2005). 10.1021/jp0519013
    • (2005) J. Phys. Chem. A , vol.109 , pp. 10199
    • Takeuchi, S.1    Tahara, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.