메뉴 건너뛰기




Volumn 9, Issue 3, 2005, Pages 273-288

Association mining in time-varying domains

Author keywords

association mining; change detection; similarity metrics

Indexed keywords

ASSOCIATION MINING; CHANGE DETECTION; ITEM SETS; PERFORMANCE CRITERION; SHOPPING CARTS; SIMILARITY METRICS; TIME-VARYING DOMAINS; TIME-VARYING ENVIRONMENTS;

EID: 67749084610     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2005-9304     Document Type: Conference Paper
Times cited : (7)

References (46)
  • 2
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski and A. Swami, Mining Association Rules between Sets of Items in Large Databases, Proceedings of ACM SIGMOD (1993), 207-216.
    • (1993) Proceedings of ACM SIGMOD , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 9
    • 23044530982 scopus 로고    scopus 로고
    • A theoretical framework for association mining based on the boolean retrieval model
    • Y. Kambayashi, W. Winiwarter and M. Arikawa, eds, Munich, Germany, Sept Springer
    • P. Bollmann-Sdorra, A. Hafez and V.V. Raghavan, A Theoretical Framework for Association Mining based on the Boolean Retrieval Model, Data Warehousing and Knowledge Discovery: 3rd International Conference, (DaWaK-01), Y. Kambayashi, W. Winiwarter and M. Arikawa, eds, Munich, Germany, Sept., Springer, 2001, 21-30.
    • (2001) Data Warehousing and Knowledge Discovery: 3rd International Conference, (DaWaK-01) , pp. 21-30
    • Bollmann-Sdorra, P.1    Hafez, A.2    Raghavan, V.V.3
  • 10
    • 0031162961 scopus 로고    scopus 로고
    • Dynamic itemset counting and implication rules for market basket data
    • S. Brin, R. Motwani, J.D. Ullman and S. Tsur, Dynamic Itemset Counting and Implication Rules for Market Basket Data, SIGMOD Record 26(2) (1997), 255.
    • (1997) SIGMOD Record , vol.26 , Issue.2 , pp. 255
    • Brin, S.1    Motwani, R.2    Ullman, J.D.3    Tsur, S.4
  • 11
    • 0029733589 scopus 로고    scopus 로고
    • Maintenance of discovered association rules in large databases: An incremental updating technique
    • New Orleans, Louisiana
    • D.W. Cheung and J. Han, Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique, Proceedings of the 12th International Conference on Data Engineering, New Orleans, Louisiana, 1996.
    • (1996) Proceedings of the 12th International Conference on Data Engineering
    • Cheung, D.W.1    Han, J.2
  • 17
    • 0033311838 scopus 로고    scopus 로고
    • Mining multiple-level association rules in large databases
    • J. Han and Y. Fu, Mining Multiple-Level Association Rules in Large Databases, IEEE Transactions on Knowledge Engineering 11 (1999), 798-805.
    • (1999) IEEE Transactions on Knowledge Engineering , vol.11 , pp. 798-805
    • Han, J.1    Fu, Y.2
  • 18
    • 7744245837 scopus 로고    scopus 로고
    • PhD dissertation, School of Computer Science and Engineering, University of New South Wales, Australia
    • M.B. Harries, Batch Learning in Domains with Hidden Changes in Context, PhD dissertation, School of Computer Science and Engineering, University of New South Wales, Australia, 1999.
    • (1999) Batch Learning in Domains with Hidden Changes in Context
    • Harries, M.B.1
  • 21
  • 22
    • 0024896089 scopus 로고
    • Floating approximation in time-varying knowledge bases
    • M. Kubat, Floating Approximation in Time-Varying Knowledge Bases, Pattern Recognition Letters 10 (1989), 223-227.
    • (1989) Pattern Recognition Letters , vol.10 , pp. 223-227
    • Kubat, M.1
  • 26
    • 0141741872 scopus 로고    scopus 로고
    • PhD Disertation School of Information Technology and Engineering, George Mason University, Fairfax, Virginia
    • M. Maloof, Progressive Partial Memory Learning, PhD Disertation, School of Information Technology and Engineering, George Mason University, Fairfax, Virginia, 1996.
    • (1996) Progressive Partial Memory Learning
    • Maloof, M.1
  • 27
    • 0034299906 scopus 로고    scopus 로고
    • Selecting examples for partial memory learning
    • M. Maloof and R.S. Michalski, Selecting Examples for Partial Memory Learning, Machine Learning 41 (2000), 27-52.
    • (2000) Machine Learning , vol.41 , pp. 27-52
    • Maloof, M.1    Michalski, R.S.2
  • 31
    • 84976830511 scopus 로고
    • An effective hash based algorithm for mining association rules
    • J.-S. Park, M.S. Chen and P.S. Yu, An Effective Hash Based Algorithm for Mining Association Rules, Proceedings of the ACM SIGMOD (1995), 175-186.
    • (1995) Proceedings of the ACM SIGMOD , pp. 175-186
    • Park, J.-S.1    Chen, M.S.2    Yu, P.S.3
  • 36
    • 0002034520 scopus 로고    scopus 로고
    • On the discovery of interesting patterns in association rules
    • S. Ramaswamy, S. Mahajan and A. Silberschatz, On the Discovery of Interesting Patterns in Association Rules, Very Large Databases (1998), 368-379.
    • (1998) Very Large Databases , pp. 368-379
    • Ramaswamy, S.1    Mahajan, S.2    Silberschatz, A.3
  • 37
    • 0036184255 scopus 로고    scopus 로고
    • Mining optimized association rules with categorical and numeric attributes
    • R. Rastogi and K. Shim, Mining Optimized Association Rules with Categorical and Numeric Attributes, IEEE Transactions on Knowledge nad Data Engineering 14 (2002), 29-50.
    • (2002) IEEE Transactions on Knowledge Nad Data Engineering , vol.14 , pp. 29-50
    • Rastogi, R.1    Shim, K.2
  • 38
    • 7744234649 scopus 로고    scopus 로고
    • Doctoral Dissertaion at the University of Louisiana at Lafayette, Center for Advanced Computer Studies
    • A. Rozsypal, Association Mining in Time-Varying Domains, Doctoral Dissertaion at the University of Louisiana at Lafayette, Center for Advanced Computer Studies, 2003.
    • (2003) Association Mining in Time-Varying Domains
    • Rozsypal, A.1
  • 40
    • 0000898845 scopus 로고
    • An analysis of variance test of normality
    • S.S. Shapiro and M.B. Wilk, An Analysis of Variance Test of Normality, Biometrika 52 (1965), 591-611.
    • (1965) Biometrika , vol.52 , pp. 591-611
    • Shapiro, S.S.1    Wilk, M.B.2
  • 44
    • 0031164523 scopus 로고    scopus 로고
    • Tracking concept drift through meta-learning
    • G. Widmer, Tracking Concept Drift through Meta-Learning, Machine Learning 27 (1997), 259-286.
    • (1997) Machine Learning , vol.27 , pp. 259-286
    • Widmer, G.1
  • 45
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G.Widmer and M. Kubat, Learning in the Presence of Concept Drift and Hidden Contexts, Machine Learning 23 (1996), 69-101.
    • (1996) Machine Learning , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 46
    • 18244401103 scopus 로고    scopus 로고
    • Special Issue on Concept Drift and Learning in Context-Sensitive Domains
    • G. Widmer and M. Kubat, eds, Machine Learning, 32, No. 2., Special Issue on Concept Drift and Learning in Context-Sensitive Domains, 1998.
    • (1998) Machine Learning , vol.32 , pp. 2
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.