-
1
-
-
0037385206
-
Quantitative assessment to the structural basis of water repellency in natural and technical surfaces
-
DOI 10.1093/jxb/erg127
-
P. Wagner, R. Furstner, W. Barthlott, and C. Neinhuis, J. Exp. Bot. 0022-0957 54, 1295 (2003). 10.1093/jxb/erg127 (Pubitemid 36412926)
-
(2003)
Journal of Experimental Botany
, vol.54
, Issue.385
, pp. 1295-1303
-
-
Wagner, P.1
Furstner, R.2
Barthlott, W.3
Neinhuis, C.4
-
2
-
-
36549035273
-
The dream of staying clean: Lotus and biomimetic surfaces
-
DOI 10.1088/1748-3182/2/4/S02, PII S1748318207496132
-
A. Solga, Z. Cerman, B. F. Striffler, M. Spaeth, and W. Barthlott, Bions. Biomim. 2, S126 (2007). 10.1088/1748-3182/2/4/S02 (Pubitemid 350179163)
-
(2007)
Bioinspiration and Biomimetics
, vol.2
, Issue.4
-
-
Solga, A.1
Cerman, Z.2
Striffler, B.F.3
Spaeth, M.4
Barthlott, W.5
-
3
-
-
58149482571
-
-
10.1088/1748-3182/3/4/046002
-
K. Koch, A. J. Schulte, A. Fischer, S. N. Gorb, and W. Barthlott, Bions. Biomim. 3, 046002 (2008). 10.1088/1748-3182/3/4/046002
-
(2008)
Bions. Biomim.
, vol.3
, pp. 046002
-
-
Koch, K.1
Schulte, A.J.2
Fischer, A.3
Gorb, S.N.4
Barthlott, W.5
-
4
-
-
48749085514
-
-
0968-4328,. 10.1016/j.micron.2007.11.010
-
K. Koch and H. -J. Ensikat, Micron 0968-4328 39, 759 (2008). 10.1016/j.micron.2007.11.010
-
(2008)
Micron
, vol.39
, pp. 759
-
-
Koch, K.1
Ensikat, H.-J.2
-
5
-
-
49449098251
-
-
1744-683X,. 10.1039/b804854a
-
K. Koch, B. Bhushan, and W. Barthlott, Soft Matter 1744-683X 4, 1943 (2008). 10.1039/b804854a
-
(2008)
Soft Matter
, vol.4
, pp. 1943
-
-
Koch, K.1
Bhushan, B.2
Barthlott, W.3
-
6
-
-
33744528654
-
Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces
-
DOI 10.1016/j.ultramic.2005.10.007, PII S0304399106000386
-
Z. Burton and B. Bhushan, Ultramicroscopy 0304-3991 106, 709 (2006). 10.1016/j.ultramic.2005.10.007 (Pubitemid 43994316)
-
(2006)
Ultramicroscopy
, vol.106
, Issue.8-9
, pp. 709-719
-
-
Burton, Z.1
Bhushan, B.2
-
7
-
-
33744528912
-
Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces
-
DOI 10.1088/0957-4484/17/11/008, PII S0957448406185013
-
B. Bhushan and Y. C. Jung, Nanotechnology 0957-4484 17, 2758 (2006). 10.1088/0957-4484/17/11/008 (Pubitemid 43814926)
-
(2006)
Nanotechnology
, vol.17
, Issue.11
, pp. 2758-2772
-
-
Bhushan, B.1
Jung, Y.C.2
-
8
-
-
34249889315
-
Nanoscale compositional mapping with gentle forces
-
DOI 10.1038/nmat1925, PII NMAT1925
-
R. Garcia, R. Magerle, and R. Perez, Nature Mater. 1476-1122 6, 405 (2007). 10.1038/nmat1925 (Pubitemid 46869990)
-
(2007)
Nature Materials
, vol.6
, Issue.6
, pp. 405-411
-
-
Garcia, R.1
Magerle, R.2
Perez, R.3
-
9
-
-
44449102247
-
Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces
-
DOI 10.1088/0953-8984/20/22/225010, PII S095389840856187X
-
B. Bhushan and Y. C. Jung, J. Phys.: Condens. Matter 0953-8984 20, 225010 (2008). 10.1088/0953-8984/20/22/225010 (Pubitemid 351763573)
-
(2008)
Journal of Physics Condensed Matter
, vol.20
, Issue.22
, pp. 225010
-
-
Bhushan, B.1
Jung, Y.C.2
-
10
-
-
33745627477
-
A new technical approach to quantify cell-cell adhesion forces by AFM
-
DOI 10.1016/j.ultramic.2005.08.003, PII S0304399106000283
-
P. -H. Puech, K. Poole, D. Knebel, and D. J. Muller, Ultramicroscopy 0304-3991 106, 637 (2006). 10.1016/j.ultramic.2005.08.003 (Pubitemid 43994307)
-
(2006)
Ultramicroscopy
, vol.106
, Issue.8-9
, pp. 637-644
-
-
Puech, P.-H.1
Poole, K.2
Knebel, D.3
Muller, D.J.4
-
12
-
-
67651246225
-
-
Note
-
The AFM measurements on superhydrophobic leaf surfaces were rather challenging. Frequently a strong lateral deflection of the laser signal up to overange photodiode signal-appears during the AFM scan probably caused by lateral bending and torsion of the cantilever. Therefore the AFM scan movement often stopped. This appears more frequently for scans in air and also in liquids for the first period of time after the leaves were immersed in the liquid. We observed that the submersion time needed for a successful scan was dependent on the microstructure of the leaf surfaces. Dried Colocasia esculenta with collapsed papillae needed 2 hours of submersion before a reasonable scan could be measured. Noncollapsed papillae could be reasonably scanned only after approximately 20 h of preliminary water submersion. As recently pointed out (Ref.), the high dewetting ability of superhydrophobic plant leaves can be transformed to a wetting state by soaking the leaves in water for some hours. This shows that successful AFM scans can be performed once the plant surface is wetted thoroughly.
-
-
-
-
13
-
-
61549086252
-
-
0743-7463,. 10.1021/la8024233
-
J. Zhang, X. Sheng, and L. Jiang, Langmuir 0743-7463 25, 1371 (2009). 10.1021/la8024233
-
(2009)
Langmuir
, vol.25
, pp. 1371
-
-
Zhang, J.1
Sheng, X.2
Jiang, L.3
-
14
-
-
0141939450
-
-
0743-7463,. 10.1021/la0344682
-
A. Marmur, Langmuir 0743-7463 19, 8343 (2003). 10.1021/la0344682
-
(2003)
Langmuir
, vol.19
, pp. 8343
-
-
Marmur, A.1
-
15
-
-
51349096424
-
-
0003-6951,. 10.1063/1.2976635
-
B. Bhushan, K. Koch, and Y. C. Jung, Appl. Phys. Lett. 0003-6951 93, 093101 (2008). 10.1063/1.2976635
-
(2008)
Appl. Phys. Lett.
, vol.93
, pp. 093101
-
-
Bhushan, B.1
Koch, K.2
Jung, Y.C.3
-
16
-
-
67651213028
-
-
The intrinsic contact angle of the Colocasia esculenta leaf was estimated (Refs.) from calculation to range between 126° and 96°. The contact angle of a water droplet against paraffin wax was reported (Ref.) to be 104°. We present calculations at an intrinsic contact angle of 100°. There the wetting state for the hierarchical structure is fully unstable.
-
The intrinsic contact angle of the Colocasia esculenta leaf was estimated (Refs.) from calculation to range between 126° and 96°. The contact angle of a water droplet against paraffin wax was reported (Ref.) to be 104°. We present calculations at an intrinsic contact angle of 100°. There the wetting state for the hierarchical structure is fully unstable.
-
-
-
|