메뉴 건너뛰기




Volumn 42, Issue 5, 2009, Pages 2965-2972

The long wave limiting of the discrete nonlinear evolution equations

Author keywords

[No Author keywords available]

Indexed keywords

DIFFERENTIAL EQUATIONS;

EID: 67651211698     PISSN: 09600779     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chaos.2009.04.047     Document Type: Article
Times cited : (4)

References (23)
  • 2
    • 35949040541 scopus 로고
    • Exact soliton of the KdV equtaion for multiple collisions of solitons
    • Hirota R. Exact soliton of the KdV equtaion for multiple collisions of solitons. Phys Rev Lett 27 (1971) 1192-1194
    • (1971) Phys Rev Lett , vol.27 , pp. 1192-1194
    • Hirota, R.1
  • 3
    • 0002164187 scopus 로고
    • Analytical descriptions of ultrashort optical pulse propagation in a resonant medium
    • Lamb G.L. Analytical descriptions of ultrashort optical pulse propagation in a resonant medium. Rev Mod Phys 43 (1971) 99-124
    • (1971) Rev Mod Phys , vol.43 , pp. 99-124
    • Lamb, G.L.1
  • 4
    • 0032206474 scopus 로고    scopus 로고
    • Positon-like solutions of nonlinear evolution equations in (2 + 1) dimensions
    • Chow K.W., Lai W.C., Shek C.K., and Tso K. Positon-like solutions of nonlinear evolution equations in (2 + 1) dimensions. Chaos, Solitons and Fractals 9 (1998) 1901-1912
    • (1998) Chaos, Solitons and Fractals , vol.9 , pp. 1901-1912
    • Chow, K.W.1    Lai, W.C.2    Shek, C.K.3    Tso, K.4
  • 5
    • 20444439142 scopus 로고    scopus 로고
    • Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources
    • Ma W.X. Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources. Chaos, Solitons and Fractals 26 (2005) 1453-1458
    • (2005) Chaos, Solitons and Fractals , vol.26 , pp. 1453-1458
    • Ma, W.X.1
  • 6
    • 84911743709 scopus 로고
    • Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem
    • Airault H., Mckean H.P., and Moser J. Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm Pure Appl Math 30 (1977) 95-148
    • (1977) Comm Pure Appl Math , vol.30 , pp. 95-148
    • Airault, H.1    Mckean, H.P.2    Moser, J.3
  • 7
    • 36749108920 scopus 로고
    • Solitons and rational solutions of nonlinear evolution equations
    • Ablowitz M.J., and Satsuma J. Solitons and rational solutions of nonlinear evolution equations. J Math Phys 19 (1978) 2180-2186
    • (1978) J Math Phys , vol.19 , pp. 2180-2186
    • Ablowitz, M.J.1    Satsuma, J.2
  • 8
    • 0036525999 scopus 로고    scopus 로고
    • 1,2-rational N-soliton solutions for difference-differential equations related to the Volterra equation
    • Narita K. 1,2-rational N-soliton solutions for difference-differential equations related to the Volterra equation. Chaos, Solitons and Fractals 13 (2002) 1121-1128
    • (2002) Chaos, Solitons and Fractals , vol.13 , pp. 1121-1128
    • Narita, K.1
  • 9
    • 0007474471 scopus 로고
    • Lump solutions of the BKP equation
    • Nimmo J.J.C., and Freeman N.C. Lump solutions of the BKP equation. Phys Lett A 147 (1983) 472-476
    • (1983) Phys Lett A , vol.147 , pp. 472-476
    • Nimmo, J.J.C.1    Freeman, N.C.2
  • 10
    • 0031558833 scopus 로고    scopus 로고
    • Rational solutions of integrable equations via nonlinear superposition formulae
    • Hu X.B. Rational solutions of integrable equations via nonlinear superposition formulae. J Phys A Math Gen 30 (1997) 8225-8240
    • (1997) J Phys A Math Gen , vol.30 , pp. 8225-8240
    • Hu, X.B.1
  • 11
    • 4243780656 scopus 로고    scopus 로고
    • On the dynamics of rational solutions for the 1D Volterra system
    • Carstea A.S. On the dynamics of rational solutions for the 1D Volterra system. Phys Lett A 233 (1997) 378-382
    • (1997) Phys Lett A , vol.233 , pp. 378-382
    • Carstea, A.S.1
  • 12
    • 0000758935 scopus 로고
    • Generalized Wronskian formula for solutions of the KdV equations: first applications
    • Matveev V.B. Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys Lett A 166 (1992) 205-208
    • (1992) Phys Lett A , vol.166 , pp. 205-208
    • Matveev, V.B.1
  • 13
    • 6344229859 scopus 로고    scopus 로고
    • Singular solutions in Casoratian form for two differential-difference equations
    • Zhang D.J. Singular solutions in Casoratian form for two differential-difference equations. Chaos, Solitons and Fractals 23 (2005) 1333-1350
    • (2005) Chaos, Solitons and Fractals , vol.23 , pp. 1333-1350
    • Zhang, D.J.1
  • 14
    • 0142197369 scopus 로고    scopus 로고
    • Bäcklund transformation and soliton solutions for the shallow water waves equation
    • Zhang Y., and Chen D.Y. Bäcklund transformation and soliton solutions for the shallow water waves equation. Chaos, Solitons and Fractals 20 (2004) 343-351
    • (2004) Chaos, Solitons and Fractals , vol.20 , pp. 343-351
    • Zhang, Y.1    Chen, D.Y.2
  • 15
    • 4644294130 scopus 로고    scopus 로고
    • A new representation of N-soliton solution and limiting solutions for the fifth order KdV equation
    • Zhang Y., and Chen D.Y. A new representation of N-soliton solution and limiting solutions for the fifth order KdV equation. Chaos, Solitons and Fractals 23 (2005) 1055-1061
    • (2005) Chaos, Solitons and Fractals , vol.23 , pp. 1055-1061
    • Zhang, Y.1    Chen, D.Y.2
  • 16
    • 33645862576 scopus 로고    scopus 로고
    • A direct method for deriving a multisoliton solution to the fifth order KdV equation
    • Zhang Y., Chen D.Y., and Li Z.B. A direct method for deriving a multisoliton solution to the fifth order KdV equation. Chaos, Solitons and Fractals 29 (2006) 1188-1193
    • (2006) Chaos, Solitons and Fractals , vol.29 , pp. 1188-1193
    • Zhang, Y.1    Chen, D.Y.2    Li, Z.B.3
  • 17
    • 0036249366 scopus 로고    scopus 로고
    • Positons: slowly decreasing analogues of solitons
    • Matveev V.B. Positons: slowly decreasing analogues of solitons. Theor Math Phys 131 (2002) 483-497
    • (2002) Theor Math Phys , vol.131 , pp. 483-497
    • Matveev, V.B.1
  • 18
    • 0010115186 scopus 로고    scopus 로고
    • Negaton and positon solutions of the KdV and mKdV hierarchy
    • Rasinariu C., Sukhatme U., and Khare A. Negaton and positon solutions of the KdV and mKdV hierarchy. J Phys A Math Gen 29 (1996) 1803-1823
    • (1996) J Phys A Math Gen , vol.29 , pp. 1803-1823
    • Rasinariu, C.1    Sukhatme, U.2    Khare, A.3
  • 19
    • 0007647757 scopus 로고
    • Positon and positon-like solutions of the Korteweg-de Vries and Sine-Gordon equations
    • Jaworski M., and Zagrodzinski J. Positon and positon-like solutions of the Korteweg-de Vries and Sine-Gordon equations. Chaos, Solitons and Fractals 35 (1995) 2229-2233
    • (1995) Chaos, Solitons and Fractals , vol.35 , pp. 2229-2233
    • Jaworski, M.1    Zagrodzinski, J.2
  • 20
    • 1842842984 scopus 로고    scopus 로고
    • Rational solutions of the Toda lattice equation in Casoratian form
    • Ma W.X., and You Y.C. Rational solutions of the Toda lattice equation in Casoratian form. Chaos, Solitons and Fractals 22 (2004) 395-406
    • (2004) Chaos, Solitons and Fractals , vol.22 , pp. 395-406
    • Ma, W.X.1    You, Y.C.2
  • 21
    • 0001935348 scopus 로고
    • A variety of nonlinear network equations generated from the Bover(a, ̂)cklund transformation for the Toda lattice
    • Hirota R., and Satsuma J. A variety of nonlinear network equations generated from the Bover(a, ̂)cklund transformation for the Toda lattice. Prog Theor Phys Suppl 59 (1976) 64-100
    • (1976) Prog Theor Phys Suppl , vol.59 , pp. 64-100
    • Hirota, R.1    Satsuma, J.2
  • 22
    • 21844496647 scopus 로고
    • Rational solutions of a differential-difference KdV equation, the Toda equation and the discrete KdV equation
    • Hu X.B., and Clarkson A.P. Rational solutions of a differential-difference KdV equation, the Toda equation and the discrete KdV equation. J Phys A Math Gen 28 (1995) 5009-5016
    • (1995) J Phys A Math Gen , vol.28 , pp. 5009-5016
    • Hu, X.B.1    Clarkson, A.P.2
  • 23
    • 0037136277 scopus 로고    scopus 로고
    • Complexiton solutions to the Korteweg-de Vries equation
    • Ma W.X. Complexiton solutions to the Korteweg-de Vries equation. Phys Lett A 301 (2002) 35-44
    • (2002) Phys Lett A , vol.301 , pp. 35-44
    • Ma, W.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.