메뉴 건너뛰기




Volumn 30, Issue 6, 2009, Pages 1228-1232

Soft sensor modeling using SVM in fermentation process

Author keywords

Akaike information criterion (AIC); Genetic simulation annealing algorithm (GSAA); Soft sensor; Support vector machines (SVM)

Indexed keywords

AKAIKE INFORMATION CRITERION; AKAIKE INFORMATION CRITERION (AIC); FERMENTATION PROCESS; GENETIC SIMULATION ANNEALING ALGORITHM (GSAA); INPUT VARIABLE SELECTION; INPUT VARIABLES; NOVEL METHODS; OBJECTIVE FUNCTIONS; OPTIMAL VALUES; PARAMETER SELECTION; PARAMETER SETTING; SELECTION PROBLEMS; SIMULATION ANNEALING ALGORITHM; SOFT SENSOR; SOFT-SENSOR MODELING; SUPPORT VECTOR MACHINES (SVM); TRAINING PROCEDURES;

EID: 67651151381     PISSN: 02543087     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (17)

References (11)
  • 2
    • 33750031763 scopus 로고    scopus 로고
    • Image target recognition method based on moment invariant and SVM
    • Chen B, Yang Y, Shen T S. Image target recognition method based on moment invariant and SVM[J]. Chinese Journal of Scientific Instrument, 2006, 27(Suppl. 3): 2093-2094.
    • (2006) Chinese Journal of Scientific Instrument , vol.27 , Issue.SUPPL. 3 , pp. 2093-2094
    • Chen, B.1    Yang, Y.2    Shen, T.S.3
  • 3
    • 33644957812 scopus 로고    scopus 로고
    • Selection of SVM parameters using chaos optimization algorithms
    • Yuan X F, Wang Y N. Selection of SVM parameters using chaos optimization algorithms[J]. Control and Decision, 2006, 21(1): 111-117.
    • (2006) Control and Decision , vol.21 , Issue.1 , pp. 111-117
    • Yuan, X.F.1    Wang, Y.N.2
  • 4
    • 38349186243 scopus 로고    scopus 로고
    • Local prediction of non-linear time series using support vector regression
    • Lau K W, Wu Q H. Local prediction of non-linear time series using support vector regression[J]. Pattern Recognition, 2008 (41): 1539-1547.
    • (2008) Pattern Recognition , Issue.41 , pp. 1539-1547
    • Lau, K.W.1    Wu, Q.H.2
  • 5
    • 36148952503 scopus 로고    scopus 로고
    • Development of support vector regression (SVR)-based correlation for prediction of overall gas hold-u Pin bubble column reactors for various gas-liquid systems
    • Gandhi A B, Joshi J B, Jayaraman V K, et al. Development of support vector regression (SVR)-based correlation for prediction of overall gas hold-u Pin bubble column reactors for various gas-liquid systems[J]. Chemical Engineering Science, 2007 (62): 7078-7089.
    • (2007) Chemical Engineering Science , Issue.62 , pp. 7078-7089
    • Gandhi, A.B.1    Joshi, J.B.2    Jayaraman, V.K.3
  • 6
    • 33846501603 scopus 로고    scopus 로고
    • Fermentation process modeling based on dynamic ε-SVM
    • Gao X J, Wang P, Sun C ZH, et al. Fermentation process modeling based on dynamic ε-SVM[J]. Chinese Journal of Scientific Instrument, 2006, 27 (11): 1497-1500.
    • (2006) Chinese Journal of Scientific Instrument , vol.27 , Issue.11 , pp. 1497-1500
    • Gao, X.J.1    Wang, P.2    Sun, C.Z.3
  • 7
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • Lin S W, Ying K C, Chen S C, et al. Particle swarm optimization for parameter determination and feature selection of support vector machines[J]. Expert System with Application, 2008 (35): 1817-1824.
    • (2008) Expert System with Application , Issue.35 , pp. 1817-1824
    • Lin, S.W.1    Ying, K.C.2    Chen, S.C.3
  • 8
    • 46449085154 scopus 로고    scopus 로고
    • Parameter selection for support vector machines based on hybrid genetic algorithms
    • Yan G T, Li CH J. Parameter selection for support vector machines based on hybrid genetic algorithms [J]. Journal of Harbin Institute of Technology, 2008 (5): 688-691.
    • (2008) Journal of Harbin Institute of Technology , Issue.5 , pp. 688-691
    • Yan, G.T.1    Li, C.J.2
  • 9
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan W W, Shao H H, Wang X F. Soft sensing modeling based on support vector machine and Bayesian model selection[J]. Computer and Chemical Engineering, 2004(28): 1489-1498.
    • (2004) Computer and Chemical Engineering , Issue.28 , pp. 1489-1498
    • Yan, W.W.1    Shao, H.H.2    Wang, X.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.