메뉴 건너뛰기




Volumn 19, Issue 4, 2004, Pages 359-366

Persistence and periodic orbits for two-species non-autonomous diffusion Lotka-Volterra models

Author keywords

Diffusion; Global stability; Periodic orbits; Persistence

Indexed keywords


EID: 84978933417     PISSN: 10051031     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11766-004-0001-5     Document Type: Article
Times cited : (13)

References (10)
  • 1
    • 0001761074 scopus 로고
    • An application of topological degree to the periodic competing species problem
    • Alvarez С, Lazer А C. An application of topological degree to the periodic competing species problem, J Austral Math Soc Ser B, 1986. 28:202-219.
    • (1986) J Austral Math Soc Ser B , vol.28 , pp. 202-219
    • Alvarez, C.1    Lazer, A.C.2
  • 2
    • 0041786432 scopus 로고
    • Convergence and ultimate bounds of solutions of the nonautonomous Lotka-Volterra competition equations
    • Ahmad S. Convergence and ultimate bounds of solutions of the nonautonomous Lotka-Volterra competition equations, J Math Anal Appi, 1987,127:377-387.
    • (1987) J Math Anal Appi , vol.127 , pp. 377-387
    • Ahmad, S.1
  • 3
    • 0000793907 scopus 로고
    • Dispersion and population interaction
    • Levin S A. Dispersion and population interaction, The Amer Naturalist, 1974, 108:207-228.
    • (1974) The Amer Naturalist , vol.108 , pp. 207-228
    • Levin, S.A.1
  • 4
    • 38249016696 scopus 로고
    • Coexistence of any number of species in the Lotka-Volterra systems over two patches
    • Kisimoto K. Coexistence of any number of species in the Lotka-Volterra systems over two patches, Theoretical Population Biology. 1990.38:149-158.
    • (1990) Theoretical Population Biology , vol.38 , pp. 149-158
    • Kisimoto, K.1
  • 5
    • 0025162583 scopus 로고
    • Conflict between the need to forage and the need to avoid competition: Persistence of two-species model
    • Takeuchi Y. Conflict between the need to forage and the need to avoid competition: Persistence of two-species model, Math Biosci,1990,99:181-194.
    • (1990) Math Biosci , vol.99 , pp. 181-194
    • Takeuchi, Y.1
  • 6
    • 84979037906 scopus 로고    scopus 로고
    • Persistence and periodic orbits for two-species nonautonomous diffusion Lotka-Volterra models
    • Zeng Guangzhao, Chen Lansun. Persistence and periodic orbits for two-species nonautonomous diffusion Lotka-Volterra models, Math Comput Modelling, 1996,23:17-27.
    • (1996) Math Comput Modelling , vol.23 , pp. 17-27
    • Guangzhao, Z.1    Lansun, C.2
  • 7
    • 0028359362 scopus 로고
    • Predator-prey dynamics in models of prey dispersal in two-patches environment
    • Kuang Y, Takeuchi Y. Predator-prey dynamics in models of prey dispersal in two-patches environment, Math Biosci, 1994, 120:77-98.
    • (1994) Math Biosci , vol.120 , pp. 77-98
    • Kuang, Y.1    Takeuchi, Y.2
  • 8
    • 2942691211 scopus 로고    scopus 로고
    • Persistence and periodic orbits for nonautonomous Lotka-Volterra diffusion model
    • Zhu Hongliang, Duan Kuichen. Persistence and periodic orbits for nonautonomous Lotka-Volterra diffusion model, Mathematica Applicata, 1998, 11(2): 104-108.
    • (1998) Mathematica Applicata , vol.11 , Issue.2 , pp. 104-108
    • Hongliang, Z.1    Kuichen, D.2
  • 9
    • 0043076434 scopus 로고    scopus 로고
    • Periodic solutions for a delayed predator-prey model of prey dispersal in two-patch environments
    • Xu Rui, Chaplain M A J, Davidson F A. Periodic solutions for a delayed predator-prey model of prey dispersal in two-patch environments, Nonlinear Analysis: Real World Applications, 2004, 5 (1): 183-206.
    • (2004) Nonlinear Analysis: Real World Applications , vol.5 , Issue.1 , pp. 183-206
    • Rui, X.1    Chaplain, M.2    Davidson, F.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.