메뉴 건너뛰기




Volumn , Issue , 2009, Pages

Segmentation of ventricles in brain CT images using gaussian mixture model method

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATED DETECTION; BRAIN TISSUE; CT IMAGE; DATA SETS; EXPECTATION-MAXIMIZATION METHOD; GAUSSIAN MIXTURE MODEL; GAUSSIAN MIXTURES; ITERATED CONDITIONAL MODES; K-MEANS CLUSTERING; REGION OF INTEREST; SEGMENTATION METHODS; SEGMENTATION RESULTS; SEGMENTED REGIONS; TEMPLATE MATCH;

EID: 67650648714     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCME.2009.4906676     Document Type: Conference Paper
Times cited : (12)

References (13)
  • 1
    • 33748123943 scopus 로고    scopus 로고
    • Constrained gaussian mixture model framework for automatic segmentation of mr brain images
    • H. Greenspan, A. Ruf, and J. Goldberger, "Constrained gaussian mixture model framework for automatic segmentation of mr brain images." IEEE Trans. Med. Imaging, vol. 25, no. 9, pp. 1233-1245, 2006.
    • (2006) IEEE Trans. Med. Imaging , vol.25 , Issue.9 , pp. 1233-1245
    • Greenspan, H.1    Ruf, A.2    Goldberger, J.3
  • 2
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag, "On the statistical analysis of dirty pictures," J. R. Statist. Soc, B, vol. 48, no. 3, pp. 259-302, 1986.
    • (1986) J. R. Statist. Soc, B , vol.48 , Issue.3 , pp. 259-302
    • Besag, J.1
  • 6
    • 85009112348 scopus 로고    scopus 로고
    • Four-layer categorization scheme of fast gmm computation techniques in large vocabulary continuous speech recognition systems
    • A. Chan, J. Sherwani, R. Mosur, and A. Rudnicky, "Four-layer categorization scheme of fast gmm computation techniques in large vocabulary continuous speech recognition systems," in Proceedings of INTERSPEECH 2004, pp. 689-692.
    • (2004) Proceedings of INTERSPEECH , pp. 689-692
    • Chan, A.1    Sherwani, J.2    Mosur, R.3    Rudnicky, A.4
  • 9
    • 0034745001 scopus 로고    scopus 로고
    • Hidden markov random field model and segmentation of brain mr images
    • Y. Zhang, S. Smith, and M. Brady, "Hidden markov random field model and segmentation of brain mr images," IEEE Transactions on Medical Imaging, vol. 20, pp. 45-57, 2001.
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , pp. 45-57
    • Zhang, Y.1    Smith, S.2    Brady, M.3
  • 10
    • 33847737395 scopus 로고    scopus 로고
    • A segmentation model using compound markov random fields based on a boundary model
    • J. Wu and A. C. Chung, "A segmentation model using compound markov random fields based on a boundary model," Image Processing, IEEE Transactions o, vol. 16, no. 1, pp. 241-252, 2007.
    • (2007) Image Processing, IEEE Transactions o , vol.16 , Issue.1 , pp. 241-252
    • Wu, J.1    Chung, A.C.2
  • 12
    • 0029322574 scopus 로고
    • Object recognition in brain ct-scans: Knowledge-based fusion ofdata from multiple feature extractors
    • H. Li, R. Deklerck, B. De Cuyper, A. Hermanus, E. Nyssen, and J. Cornelis, "Object recognition in brain ct-scans: knowledge-based fusion ofdata from multiple feature extractors," Medical Imaging, IEEE Transactions on, vol. 14, no. 2, pp. 212-229, 1995.
    • (1995) Medical Imaging, IEEE Transactions on , vol.14 , Issue.2 , pp. 212-229
    • Li, H.1    Deklerck, R.2    De Cuyper, B.3    Hermanus, A.4    Nyssen, E.5    Cornelis, J.6
  • 13
    • 37849186411 scopus 로고    scopus 로고
    • Automated segmentation of lateral ventricles from human and primate magnetic resonance images using cognition network technology
    • R. Schonmeyer, D. Prvulovic, A. Rotarska-Jagiela, C. Haenschel, and D. Linden, "Automated segmentation of lateral ventricles from human and primate magnetic resonance images using cognition network technology," Magnetic Resonance Imaging, vol. 24, no. 10, pp. 1377-1387, 2006.
    • (2006) Magnetic Resonance Imaging , vol.24 , Issue.10 , pp. 1377-1387
    • Schonmeyer, R.1    Prvulovic, D.2    Rotarska-Jagiela, A.3    Haenschel, C.4    Linden, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.