-
1
-
-
67650534057
-
-
Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Pergamon: Oxford, U.K.
-
(a) Percy, J. M. In Comprehensive Organic Functional Group Transformations; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Pergamon: Oxford, U.K., 1995; Vol.1, p 553.
-
(1995)
Comprehensive Organic Functional Group Transformations
, vol.1
, pp. 553
-
-
Percy, J.M.1
-
2
-
-
67650530626
-
-
Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Pergamon: Oxford, U.K.
-
(b) Jones, K. In Comprehensive Organic Functional Group Transformations; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Pergamon: Oxford, U.K., 1995; Vol.1, p 71.
-
(1995)
Comprehensive Organic Functional Group Transformations
, vol.1
, pp. 71
-
-
Jones, K.1
-
3
-
-
0001728302
-
-
Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, U.K.
-
(c) Takaya, H.; Noyori, R. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, U.K., 1991; Vol.8, p 443.
-
(1991)
Comprehensive Organic Synthesis
, vol.8
, pp. 443
-
-
Takaya, H.1
Noyori, R.2
-
4
-
-
0037054926
-
-
(a) Kariya, N.; Fukuoka, A.; Ichikawa, M. Appl. Catal., A 2002, 233, 91.
-
(2002)
Appl. Catal., A
, vol.233
, pp. 91
-
-
Kariya, N.1
Fukuoka, A.2
Ichikawa, M.3
-
5
-
-
14844313748
-
-
(b) Hodoshima, S.; Takaiwa, S.; Shono, A.; Satoh, K.; Saito, Y. Appl. Catal., A 2005, 283, 235.
-
(2005)
Appl. Catal., A
, vol.283
, pp. 235
-
-
Hodoshima, S.1
Takaiwa, S.2
Shono, A.3
Satoh, K.4
Saito, Y.5
-
6
-
-
24144432927
-
-
(c) Hodoshima, S.; Nagata, H.; Saito, Y. Appl. Catal., A 2005, 292, 90.
-
(2005)
Appl. Catal., A
, vol.292
, pp. 90
-
-
Hodoshima, S.1
Nagata, H.2
Saito, Y.3
-
7
-
-
33745258721
-
-
(d) Okada, Y.; Sasaki, E.; Watanabe, E.; Hyodo, S.; Nishijima, H. Int. J. Hydrogen Energy 2006, 31, 1348.
-
(2006)
Int. J. Hydrogen Energy
, vol.31
, pp. 1348
-
-
Okada, Y.1
Sasaki, E.2
Watanabe, E.3
Hyodo, S.4
Nishijima, H.5
-
8
-
-
33645450059
-
-
(e) Kariya, N.; Fukuoka, A.; Ichikawa, M. Phys. Chem. Chem. Phys. 2006, 8, 1724.
-
(2006)
Phys. Chem. Chem. Phys.
, vol.8
, pp. 1724
-
-
Kariya, N.1
Fukuoka, A.2
Ichikawa, M.3
-
9
-
-
38349107724
-
-
(f) Biniwale, R. B.; Rayalu, S.; Devotta, S.; Ichikawa, M. Int. J. Hydrogen Energy 2008, 33, 360.
-
(2008)
Int. J. Hydrogen Energy
, vol.33
, pp. 360
-
-
Biniwale, R.B.1
Rayalu, S.2
Devotta, S.3
Ichikawa, M.4
-
10
-
-
39849094446
-
-
(g) Sebastián, D.; Bordejé, E. G.; Calvillo, L.; Lázaro, M. J.; Moliner, R. Int. J. Hydrogen Energy 2008, 33, 1329.
-
(2008)
Int. J. Hydrogen Energy
, vol.33
, pp. 1329
-
-
Sebastián, D.1
Bordejé, E.G.2
Calvillo, L.3
Lázaro, M.J.4
Moliner, R.5
-
12
-
-
67650557380
-
-
WO Appl. Pat. WO 2005/000457 A2
-
(b) Pez, G. P.; Scott, A. R.; Cooper, A. C; Cheng, H.; Bagzis, L. D.; Appleby, J. B. WO Appl. Pat. WO 2005/000457 A2, 2005.
-
(2005)
-
-
Pez, G.P.1
Scott, A.R.2
Cooper, A.C.3
Cheng, H.4
Bagzis, L.D.5
Appleby, J.B.6
-
13
-
-
67650545760
-
-
U.S. Patent 7,101,530
-
(c) Pez, G. P.; Scott, A. R.; Cooper, A. C.; Cheng, H. U.S. Patent 7,101,530, 2006.
-
(2006)
-
-
Pez, G.P.1
Scott, A.R.2
Cooper, A.C.3
Cheng, H.4
-
14
-
-
29744434539
-
-
(a) Schwarz, D. E.; Cameron, T. M.; Hay, P. J.; Scott, B. L.; Tumas, W.; Thorn, D. L. Chem. Commun. 2005, 5919.
-
(2005)
Chem. Commun.
, pp. 5919
-
-
Schwarz, D.E.1
Cameron, T.M.2
Hay, P.J.3
Scott, B.L.4
Tumas, W.5
Thorn, D.L.6
-
15
-
-
33750817128
-
-
(b) Moores, A.; Poyatos, M.; Luo, Y.; Crabtree, R. H. New J. Chem. 2006, 30, 1675.
-
(2006)
New J. Chem.
, vol.30
, pp. 1675
-
-
Moores, A.1
Poyatos, M.2
Luo, Y.3
Crabtree, R.H.4
-
17
-
-
44949097190
-
-
(d) Cui, Y.; Kwok, S.; Bucholtz, A.; Davis, B.; Whitney, R. A.; Jessop, P. G. New J. Chem. 2008, 32, 1027.
-
(2008)
New J. Chem.
, vol.32
, pp. 1027
-
-
Cui, Y.1
Kwok, S.2
Bucholtz, A.3
Davis, B.4
Whitney, R.A.5
Jessop, P.G.6
-
18
-
-
67650539878
-
-
note
-
3 described hydrogen storage systems by the reversible dehydrogenation-hydrogenation of N-heterocycles using conventional heterogeneous catalysts. Although these catalytic systems using N-heterocycles are more effective than those using cyclic hydrocarbons, these heterogeneous reactions have some disadvantages: (1) a small amount of hydrogenolysis products are always produced during the reactions; (2) in the repetitive dehydrogenation-hydrogenation cycles of N-ethylcarbazole, different metals (Ru and Pd) are employed as the hydrogenation and dehydrogenation catalysts; and (3) the hydrogenation must be carried out under a high pressure of hydrogen (>50 atm). Thus, the complete reversible and repetitive dehydrogenation-hydrogenation cycles using a single catalyst in one reactor has not been achieved to date.
-
-
-
-
20
-
-
33846458263
-
-
Fujita, K.; Tanino, N.; Yamaguchi, R. Org. Lett. 2007, 9, 109.
-
(2007)
Org. Lett.
, vol.9
, pp. 109
-
-
Fujita, K.1
Tanino, N.2
Yamaguchi, R.3
-
21
-
-
0037429059
-
-
Some other groups have also reported catalytic dehydrogenative reactions of alcohols, hemiacetals, and hemiaminals. See:
-
Some other groups have also reported catalytic dehydrogenative reactions of alcohols, hemiacetals, and hemiaminals. See: (a) Ligthart, G. B. W. L.; Meijer, R. H.; Donners, M. P. J.; Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof, L. A. Tetrahedron Lett. 2003, 44, 1507.
-
(2003)
Tetrahedron Lett.
, vol.44
, pp. 1507
-
-
Ligthart, G.B.W.L.1
Meijer, R.H.2
Donners, M.P.J.3
Meuldijk, J.4
Vekemans, J.A.J.M.5
Hulshof, L.A.6
-
22
-
-
4344568023
-
-
(b) Zhang, J.; Gandelman, M.; Shimon, L. J. W.; Rozenberg, H.; Milstein, D. Organometallics 2004, 23, 4026.
-
(2004)
Organometallics
, vol.23
, pp. 4026
-
-
Zhang, J.1
Gandelman, M.2
Shimon, L.J.W.3
Rozenberg, H.4
Milstein, D.5
-
24
-
-
23744449879
-
-
(d) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2005, 127, 10840.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 10840
-
-
Zhang, J.1
Leitus, G.2
Ben-David, Y.3
Milstein, D.4
-
25
-
-
34547896611
-
-
(e) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 317, 790.
-
(2007)
Science
, vol.317
, pp. 790
-
-
Gunanathan, C.1
Ben-David, Y.2
Milstein, D.3
-
26
-
-
15444377965
-
-
We have also reported several organic transformations based on the high catalytic hydrogen-transfer activity of Cp*Ir complexes. See: and references cited therein
-
We have also reported several organic transformations based on the high catalytic hydrogen-transfer activity of Cp*Ir complexes. See: (a) Fujita, K.; Yamaguchi, R. Synlett 2005, 560, and references cited therein.
-
(2005)
Synlett
, pp. 560
-
-
Fujita, K.1
Yamaguchi, R.2
-
27
-
-
24944561548
-
-
(b) Fujita, K.; Asai, C.; Yamaguchi, T.; Hanasaka, F.; Yamaguchi, R. Org. Lett. 2005, 7, 4017.
-
(2005)
Org. Lett.
, vol.7
, pp. 4017
-
-
Fujita, K.1
Asai, C.2
Yamaguchi, T.3
Hanasaka, F.4
Yamaguchi, R.5
-
28
-
-
33748806003
-
-
(c) Hanasaka, F.; Fujita, K.; Yamaguchi, R. Organometallics 2006, 25, 4643.
-
(2006)
Organometallics
, vol.25
, pp. 4643
-
-
Hanasaka, F.1
Fujita, K.2
Yamaguchi, R.3
-
29
-
-
38749127622
-
-
(d) Yamaguchi, R.; Kawagoe, S.; Asai, C.; Fujita, K. Org. Lett. 2008, 10, 181.
-
(2008)
Org. Lett.
, vol.10
, pp. 181
-
-
Yamaguchi, R.1
Kawagoe, S.2
Asai, C.3
Fujita, K.4
-
30
-
-
38349082294
-
-
(e) Fujita, K.; Enoki, Y.; Yamaguchi, R. Tetrahedron 2008, 64, 1943.
-
(2008)
Tetrahedron
, vol.64
, pp. 1943
-
-
Fujita, K.1
Enoki, Y.2
Yamaguchi, R.3
-
31
-
-
33544458364
-
-
Several examples of the homogeneous catalytic transformation of 1,2,3,4-tetrahydroquinoline to quinoline are known. However, they require an oxidant such as molecular oxygen or tert-butylhydroperoxide, and therefore, hydrogen cannot be produced. See:
-
Several examples of the homogeneous catalytic transformation of 1,2,3,4-tetrahydroquinoline to quinoline are known. However, they require an oxidant such as molecular oxygen or tert-butylhydroperoxide, and therefore, hydrogen cannot be produced. See: (a) Murahashi, S.-I.; Naota, T.; Taki, H. J. Chem. Soc., Chem. Commun. 1985, 613.
-
(1985)
J. Chem. Soc., Chem. Commun.
, pp. 613
-
-
Murahashi, S.-I.1
Naota, T.2
Taki, H.3
-
32
-
-
0037419001
-
-
(b) Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2003, 42, 1480.
-
(2003)
Angew. Chem., Int. Ed.
, vol.42
, pp. 1480
-
-
Yamaguchi, K.1
Mizuno, N.2
-
35
-
-
34447525536
-
-
(e) Murahashi, S.-I.; Okano, Y.; Sato, H.; Nakae, T.; Komiya, N. Synlett 2007, 1675.
-
(2007)
Synlett
, pp. 1675
-
-
Murahashi, S.-I.1
Okano, Y.2
Sato, H.3
Nakae, T.4
Komiya, N.5
-
36
-
-
67650515111
-
-
note
-
We think that the key step of the reaction would be ligand-promoted dehydrogenation of a hydridoiridium intermediate with the protic hydroxyl group on the pyridine ring (see ref 7). This step could be faster when the ligand contains an electron-withdrawing substituent such as a CF3 group because the acidity of the hydroxyl group increases. Therefore, catalyst 2c exhibited the highest activity.
-
-
-
-
37
-
-
67650542655
-
-
note
-
The dehydrogenation reactions presented in Table 1 were selective for the conversion of 3 into 4. Formation of any isomers of dihydroquinolines or other hydrogenolysis products was not observed.
-
-
-
-
38
-
-
67650515110
-
-
note
-
At present, we have observed that a higher reaction temperature considerably reduces the reaction time: the dehydrogenation of 3b in mesitylene (bp. 165°C) gives 4b quantitatively in less than 5 h.
-
-
-
-
39
-
-
67650525189
-
-
note
-
We also carried out the dual reaction in the absence of 3b. The reaction resulted in no formation of decane, clearly indicating that 3b was the only hydrogen source.
-
-
-
-
40
-
-
0000288052
-
-
(a) Fish, R. H.; Tan, J. L.; Thormodsen, A. D. J. Org. Chem. 1984, 49, 4500.
-
(1984)
J. Org. Chem.
, vol.49
, pp. 4500
-
-
Fish, R.H.1
Tan, J.L.2
Thormodsen, A.D.3
-
41
-
-
0001714846
-
-
(b) Baralt, E.; Smith, S. J.; Hurwitz, J.; Horváth, I. T.; Fish, R. H. J. Am. Chem. Soc. 1992, 114, 5187.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 5187
-
-
Baralt, E.1
Smith, S.J.2
Hurwitz, J.3
Horváth, I.T.4
Fish, R.H.5
-
42
-
-
0041825591
-
-
(c) Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc. 2003, 125, 10536.
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 10536
-
-
Wang, W.-B.1
Lu, S.-M.2
Yang, P.-Y.3
Han, X.-W.4
Zhou, Y.-G.5
-
43
-
-
33745576403
-
-
(d) Lu, S.-M.; Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2006, 45, 2260.
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 2260
-
-
Lu, S.-M.1
Wang, Y.-Q.2
Han, X.-W.3
Zhou, Y.-G.4
-
46
-
-
54249139518
-
-
(g) Zhou, H.; Li, Z.; Wang, Z.; Wang, T.; Xu, L.; He, Y.; Fan, Q.-H.; Pan, J.; Gu, L.; Chan, A. S. C. Angew. Chem., Int. Ed. 2008, 47, 8464.
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 8464
-
-
Zhou, H.1
Li, Z.2
Wang, Z.3
Wang, T.4
Xu, L.5
He, Y.6
Fan, Q.-H.7
Pan, J.8
Gu, L.9
Chan, A.S.C.10
-
47
-
-
67650512425
-
-
note
-
The hydrogenation reactions presented in Table 2 were selective for the conversion of 4 into 3. Formation of dihydroquinolines, decahydroquinoline, or other hydrogenolysis products was not observed.
-
-
-
-
49
-
-
67650534058
-
-
note
-
1H NMR analysis.
-
-
-
-
50
-
-
67650525190
-
-
note
-
We carried out the stoichiometric reaction of 5 with 4b in the absence of hydrogen at 100°C. However, no iridium species coordinated with quinoline was observed, while 5 decomposed slowly and 4b remained unchanged.
-
-
-
-
51
-
-
67650527828
-
-
note
-
The precise mechanisms for the dehydrogenation and the hydrogenation are under study. It should be noted that the present dehydrogenation is characteristic of nitrogen heterocycles, because dehydrogenation of tetrahydronaphthalene with catalyst 2a or 2c does not occur.
-
-
-
-
52
-
-
67650521957
-
-
note
-
The maximum hydrogen content of tetrahydroquinolines is 3.0%, which is lower than the DOE 2010 target value of 6%.
-
-
-
|