-
2
-
-
24344484786
-
Frequent substructure-based approaches for classifying chemical compounds
-
DOI 10.1109/TKDE.2005.127, Mining Biological Data
-
M. Deshpande, M. Kuramochi, and G. Karypis, Frequent Sub-Structure- Based Approaches for Classifying Chemical Compounds, IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 8, pp. 1036- 1050, 2005. (Pubitemid 41259847)
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.8
, pp. 1036-1050
-
-
Deshpande, M.1
Kuramochi, M.2
Wale, N.3
Karypis, G.4
-
3
-
-
33745793438
-
Constructing decision trees for graph-structured data by chunkingless graph-based induction
-
DOI 10.1007/11731139-45, Advances in Knowledge Discovery and Data Mining - 10th Pacific-Asia Conference, PAKDD 2006, Proceedings
-
P. Nguyen, K. Ohara, A. Mogi, H. Motoda, and T. Washio, Constructing Decision Trees for Graph-Structured Data by Chunkingless Graph-Based Induction, Proc. of PAKDD, pp. 390-399, 2006. (Pubitemid 44019438)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3918
, pp. 390-399
-
-
Nguyen, P.C.1
Ohara, K.2
Mogi, A.3
Motoda, H.4
Washio, T.5
-
4
-
-
84898968571
-
An application of boosting to graph classification
-
T. Kudo, E. Maeda, and Y. Matsumoto, An application of boosting to graph classification, Advances in Neural Information Processing Systems, vol. 17, pp. 729-736, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 729-736
-
-
Kudo, T.1
Maeda, E.2
Matsumoto, Y.3
-
5
-
-
9444266406
-
On graph kernels: Hardness results and efficient alternatives
-
Springer
-
T. Gärtner, P. Flach, and S. Wrobel, On graph kernels: Hardness results and efficient alternatives, Sixteenth Annual Conference on Computational Learning Theory and Seventh Kernel Workshop, COLT. Springer, 2003.
-
(2003)
Sixteenth Annual Conference on Computational Learning Theory and Seventh Kernel Workshop, COLT
-
-
Gartner, T.1
Flach, P.2
Wrobel, S.3
-
6
-
-
1942516986
-
Marginalized kernels between labeled graphs
-
H. Kashima, K. Tsuda, and A. Inokuchi, Marginalized kernels between labeled graphs, Proceedings of the Twentieth International Conference on Machine Learning, pp. 321-328, 2003.
-
(2003)
Proceedings of the Twentieth International Conference on Machine Learning
, pp. 321-328
-
-
Kashima, H.1
Tsuda, K.2
Inokuchi, A.3
-
8
-
-
0012906024
-
An apriori-based algorithm for mining frequent substructures from graph data
-
Lyon, France, September 13-16, 2000: Proceedings
-
A. Inokuchi, T. Washio, and H. Motoda, An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data, Principles of Data Mining and Knowledge Discovery: 4th European Conference, PKDD 2000, Lyon, France, September 13-16, 2000: Proceedings, 2000.
-
(2000)
Principles of Data Mining and Knowledge Discovery: 4th European Conference, PKDD 2000
-
-
Inokuchi, A.1
Washio, T.2
H. Motoda3
-
12
-
-
0027652468
-
Substructure discovery using minimum description length and background knowledge
-
D. Cook and L. Holder, Substructure Discovery Using Minimum Description Length and Background Knowledge, Journal of Artificial Intelligence Research, vol. 1, pp. 231-255, 1994.
-
(1994)
Journal of Artificial Intelligence Research
, vol.1
, pp. 231-255
-
-
Cook, D.1
Holder, L.2
-
13
-
-
0032131698
-
Machine learning techniques to make computers easier to use
-
PII S0004370298000629
-
H. Motoda and K. Yoshida, Machine learning techniques to make computers easier to use, Artificial Intelligence, vol. 103, no. 1-2, pp. 295-321, 1998. (Pubitemid 128399882)
-
(1998)
Artificial Intelligence
, vol.103
, Issue.1-2
, pp. 295-321
-
-
Motoda, H.1
Yoshida, K.2
-
15
-
-
67650370476
-
Mining patterns from structured data by beam-wise graph-based induction
-
Lubeck, Germany, November 24-26, 2002: Proceedings
-
T. Matsuda, H. Motoda, T. Yoshida, and T. Washio, Mining Patterns from Structured Data by Beam-Wise Graph-Based Induction, Discovery Science: 5th International Conference, DS 2002, Lübeck, Germany, November 24-26, 2002: Proceedings, 2002.
-
(2002)
Discovery Science: 5th International Conference, DS 2002
-
-
Matsuda, T.1
Motoda, H.2
Yoshida, T.3
Washio, T.4
-
17
-
-
0030212927
-
Theories for mutagenicity: A study in first-order and feature-based induction
-
A. Srinivasan, S. Muggleton, M. Sternberg, and R. King, Theories for mutagenicity: a study in first-order and feature-based induction, Artificial Intelligence, vol. 85, no. 1-2, pp. 277-299, 1996. (Pubitemid 126363732)
-
(1996)
Artificial Intelligence
, vol.85
, Issue.SPEC. ISS.
, pp. 277-299
-
-
Srinivasana, A.1
Muggleton, S.H.2
Sternberg, M.J.E.3
King, R.D.4
-
18
-
-
0035113097
-
-
C. Helma, R. King, S. Kramer, and A. Srinivasan, The Predictive Toxicology Challenge 2000-2001, pp. 107-108, 2001.
-
(2001)
The Predictive Toxicology Challenge 2000-2001
, pp. 107-108
-
-
Helma, C.1
King, R.2
Kramer, S.3
Srinivasan, A.4
-
19
-
-
77953566274
-
Subdue: Compression-based frequent pattern discovery in graph data
-
N. Ketkar, L. Holder, and D. Cook, Subdue: compression-based frequent pattern discovery in graph data, Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, pp. 71-76, 2005.
-
(2005)
Proceedings of the 1st international workshop on open source data mining: Frequent pattern mining implementations
, pp. 71-76
-
-
Ketkar, N.1
Holder, L.2
Cook, D.3
-
20
-
-
33751357360
-
SVMLight: Support vector machine
-
University of Dortmund, November
-
T. Joachims, SVMLight: Support Vector Machine, SVM-Light Support Vector Machine http://svmlight. joachims. org/, University of Dortmund, November, 1999.
-
(1999)
SVM-Light Support Vector Machine
-
-
Joachims, T.1
-
21
-
-
9444228473
-
Weka: Practical machine learning tools and techniques with java implementations
-
I. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and S. Cunningham, Weka: Practical Machine Learning Tools and Techniques with Java Implementations, ICONIP/ANZIIS/ANNES, pp. 192-196, 1999.
-
(1999)
ICONIP/ANZIIS/ANNES
, pp. 192-196
-
-
Witten, I.1
Frank, E.2
Trigg, L.3
Hall, M.4
Holmes, G.5
Cunningham, S.6
-
22
-
-
0002900357
-
The case against accuracy estimation for comparing induction algorithms
-
F. Provost, T. Fawcett, and R. Kohavi, The case against accuracy estimation for comparing induction algorithms, Proceedings of the Fifteenth International Conference on Machine Learning, pp. 445-453, 1998.
-
(1998)
Proceedings of the Fifteenth International Conference on Machine Learning
, pp. 445-453
-
-
Provost, F.1
Fawcett, T.2
Kohavi, R.3
-
23
-
-
78149315656
-
Using rule sets to maximize roc performance
-
T. Fawcett, Using rule sets to maximize roc performance, IEEE Conference on Data Mining, p. 131, 2001.
-
(2001)
IEEE Conference on Data Mining
, pp. 131
-
-
Fawcett, T.1
|