-
1
-
-
0003518833
-
Classification and detection of computer intrusions
-
Ph.D. thesis, Purdue Univ, West Lafayette, IN
-
S. Kumar, "Classification and detection of computer intrusions", Ph.D. thesis, Purdue Univ., West Lafayette, IN, 1995.
-
(1995)
-
-
Kumar, S.1
-
2
-
-
0034836392
-
Information-theoretic measures for anomaly detection
-
Oakland, CA, May
-
W. Lee and D. Xiang "Information-theoretic measures for anomaly detection", In Proc. of the 2001 IEEE Symp. on Security and Privacy, Oakland, CA, May, 2001, pp. 130-143.
-
(2001)
Proc. of the 2001 IEEE Symp. on Security and Privacy
, pp. 130-143
-
-
Lee, W.1
Xiang, D.2
-
3
-
-
85042797742
-
Learning program behavior profiles for intrusion detection
-
Santa Clara, CA, April
-
A. K. Ghosh, A. Schwartzbard, and M. Schatz, "Learning program behavior profiles for intrusion detection", Proc. of 1st USENIX Workshop on Intrusion Detection and Network Monitoring, Santa Clara, CA, April, 1999, pp. 51-62.
-
(1999)
Proc. of 1st USENIX Workshop on Intrusion Detection and Network Monitoring
, pp. 51-62
-
-
Ghosh, A.K.1
Schwartzbard, A.2
Schatz, M.3
-
5
-
-
0032676506
-
A data mining framework for building intrusion detection models
-
Oakland, CA, May
-
W. Lee, S. J. Stolfo, and K. W. Mok "A data mining framework for building intrusion detection models", Proc. of the 1999 IEEE Symp. on Security and Privacy, Oakland, CA, May, 1999, pp. 120-132.
-
(1999)
Proc. of the 1999 IEEE Symp. on Security and Privacy
, pp. 120-132
-
-
Lee, W.1
Stolfo, S.J.2
Mok, K.W.3
-
6
-
-
84944193544
-
A data mining and Cidf based approach for etecting novel and distributed intrusions
-
W. Lee, R. A. Nimbalkar, K. K. Yee, S. B. Patil, P. H. Desai, T. T. Tran, and S. J. Stolfo, "A data mining and Cidf based approach for etecting novel and distributed intrusions", Lectures Notes in Computer Science, Vol. 1907, pp. 49-54, 2000.
-
(2000)
Lectures Notes in Computer Science
, vol.1907
, pp. 49-54
-
-
Lee, W.1
Nimbalkar, R.A.2
Yee, K.K.3
Patil, S.B.4
Desai, P.H.5
Tran, T.T.6
Stolfo, S.J.7
-
7
-
-
67650289110
-
-
The UCI KDD Archive, KDD cup 1999 data, http://kdd.ics.uci. edu/databases/kddcup99/kddcup99.html
-
The UCI KDD Archive, "KDD cup 1999 data", http://kdd.ics.uci. edu/databases/kddcup99/kddcup99.html
-
-
-
-
8
-
-
0003993827
-
-
MIT Lincoln Laboratory, MA, USA
-
MIT Lincoln Laboratory, "DARPA intrusion detection evaluation", http://www.ll.mit.edu/IST/ideval/, MA, USA.
-
DARPA intrusion detection evaluation
-
-
-
9
-
-
1542492748
-
Identifying significant features for network forensic analysis using artificial intelligent techniques
-
Winter
-
S. Mukkamala and A. H. Sung, "Identifying significant features for network forensic analysis using artificial intelligent techniques", International Journal of Digital Evidence, Vol. 1, Issue 4, Winter 2003.
-
(2003)
International Journal of Digital Evidence
, vol.1
, Issue.4
-
-
Mukkamala, S.1
Sung, A.H.2
-
10
-
-
19944364877
-
Feature deduction and ensemble design of intrusion detection systems
-
June
-
S. Chebrolu, A. Abraham, and J. P. Thomas, "Feature deduction and ensemble design of intrusion detection systems", Computer & Security, Vol. 24, Issue 4, June 2005, pp. 295-307.
-
(2005)
Computer & Security
, vol.24
, Issue.4
, pp. 295-307
-
-
Chebrolu, S.1
Abraham, A.2
Thomas, J.P.3
-
11
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
August
-
Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting", Journal of Computer and System Sciences, Vol. 55, Issue 1, August 1997, pp. 119-139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
12
-
-
0003495934
-
Bagging predictors
-
Technical Report No. 421, Department of Statistics, University of California Berkeley, September
-
L. Breiman, "Bagging predictors", Technical Report No. 421, Department of Statistics, University of California Berkeley, September 1994.
-
(1994)
-
-
Breiman, L.1
-
14
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting and variants
-
E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: bagging, boosting and variants", Machine Learning, Vol. 36, Nos. 1-2, 1999, pp. 105-139.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
15
-
-
0034247206
-
Multiboosting: A technique for combining boosting and wagging
-
G. I. Webb, "Multiboosting: a technique for combining boosting and wagging", Machine Learning, Vol. 40, 2000, pp. 159-196.
-
(2000)
Machine Learning
, vol.40
, pp. 159-196
-
-
Webb, G.I.1
-
17
-
-
67650320102
-
-
PREDICT Coordinating Center, PREDICT overview, https://www.predict.org/Portals/0/files/Documentation/MANUAL%20OF%20OPERATIONS/ PREDICT-Overview-final.pdf?
-
PREDICT Coordinating Center, "PREDICT overview", https://www.predict.org/Portals/0/files/Documentation/MANUAL%20OF%20OPERATIONS/ PREDICT-Overview-final.pdf?
-
-
-
-
18
-
-
0348015658
-
The Kullback-Leibler distance
-
S. Kullback, "The Kullback-Leibler distance", The American Statistician, 1987, pp.340-341.
-
(1987)
The American Statistician
, pp. 340-341
-
-
Kullback, S.1
-
19
-
-
0347606556
-
Winning the KDD99 classification cup: Bagged Boosting
-
B. Pfahringer, "Winning the KDD99 classification cup: Bagged Boosting", ACM SIGKDD Explorations Newsletter, Vol. 1, Issue 2, 2000, pp. 65-66.
-
(2000)
ACM SIGKDD Explorations Newsletter
, vol.1
, Issue.2
, pp. 65-66
-
-
Pfahringer, B.1
|