메뉴 건너뛰기




Volumn 42, Issue 11-12, 2009, Pages 1103-1117

Automated intelligent manufacturing system for surface finish control in CNC milling using support vector machines

Author keywords

Intelligent manufacturing system; Support vector machines; Surface finish

Indexed keywords

ANALYTICAL APPROACH; APRIORI; ARTIFICIAL INTELLIGENCE TECHNIQUES; CNC MILLING; DEPTH OF CUT; FEED-RATES; INTELLIGENT MANUFACTURING; INTELLIGENT MANUFACTURING SYSTEM; INTER-RELATIONSHIPS; MACHINE OPERATORS; MACHINING PARAMETERS; NON-TRIVIAL TASKS; OPERATING CONDITION; OPTIMUM OPERATING CONDITIONS; PARAMETRIC PROBLEMS; PHYSICAL PHENOMENA; SPINDLE SPEED; SUPPORT SYSTEMS; SURFACE FINISH; SURFACE FINISHES;

EID: 67650242415     PISSN: 02683768     EISSN: 14333015     Source Type: Journal    
DOI: 10.1007/s00170-008-1676-1     Document Type: Article
Times cited : (18)

References (19)
  • 1
    • 33645309614 scopus 로고    scopus 로고
    • A geometrical simulation system of ball end finish milling process and its application for the prediction of surface micro features
    • X Liu M Soshi A Sahasrabudhe K Yamazaki M Mori 2006 A geometrical simulation system of ball end finish milling process and its application for the prediction of surface micro features ASME J Manuf Sci Eng 128 1 74 85
    • (2006) ASME J Manuf Sci Eng , vol.128 , Issue.1 , pp. 74-85
    • Liu, X.1    Soshi, M.2    Sahasrabudhe, A.3    Yamazaki, K.4    Mori, M.5
  • 5
    • 33645316078 scopus 로고    scopus 로고
    • Numerical simulation of machined surface topography and roughness in milling process
    • T Gao W Zhang K Qiu M Wan 2006 Numerical simulation of machined surface topography and roughness in milling process ASME J Manuf Sci Eng 128 1 96 103
    • (2006) ASME J Manuf Sci Eng , vol.128 , Issue.1 , pp. 96-103
    • Gao, T.1    Zhang, W.2    Qiu, K.3    Wan, M.4
  • 6
    • 0043086775 scopus 로고    scopus 로고
    • An experimental study of the impact of turning parameters on surface roughness
    • Paper no. 2036
    • Feng CX (2001) An experimental study of the impact of turning parameters on surface roughness. In: Proceedings of the 2001 Industrial Engineering Research Conference, Paper no. 2036, pp. 1-10
    • (2001) Proceedings of the 2001 Industrial Engineering Research Conference , pp. 1-10
    • Feng, C.X.1
  • 7
    • 0038004821 scopus 로고    scopus 로고
    • Surface roughness prediction techniques for CNC end milling
    • MS Lou JC Chen CM Li 1999 Surface roughness prediction techniques for CNC end milling J Inf Technol 15 1 1 6
    • (1999) J Inf Technol , vol.15 , Issue.1 , pp. 1-6
    • Lou, M.S.1    Chen, J.C.2    Li, C.M.3
  • 8
    • 0036391197 scopus 로고    scopus 로고
    • Development of empirical models for surface roughness prediction in finish turning
    • X Wang CX Feng 2002 Development of empirical models for surface roughness prediction in finish turning Int J Adv Manuf Technol 20 5 348 356
    • (2002) Int J Adv Manuf Technol , vol.20 , Issue.5 , pp. 348-356
    • Wang, X.1    Feng, C.X.2
  • 9
    • 31044441977 scopus 로고    scopus 로고
    • Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes
    • RQ Sardinas MR Santana EA Brindis 2006 Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes Eng Appl Artif Intell 19 127 133
    • (2006) Eng Appl Artif Intell , vol.19 , pp. 127-133
    • Sardinas, R.Q.1    Santana, M.R.2    Brindis, E.A.3
  • 10
    • 0344515488 scopus 로고    scopus 로고
    • Engineering surface analysis with different wavelet bases
    • S Fu B Muralikrishnan J Raja 2003 Engineering surface analysis with different wavelet bases ASME J Manuf Sci Eng 125 4 844 852
    • (2003) ASME J Manuf Sci Eng , vol.125 , Issue.4 , pp. 844-852
    • Fu, S.1    Muralikrishnan, B.2    Raja, J.3
  • 11
    • 0038738035 scopus 로고    scopus 로고
    • Surface finish enhancement in a turning operation via adaptive str control of the depth of cut
    • E Liasi WPT North 2003 Surface finish enhancement in a turning operation via adaptive str control of the depth of cut ASME J Manuf Sci Eng 125 2 289 296
    • (2003) ASME J Manuf Sci Eng , vol.125 , Issue.2 , pp. 289-296
    • Liasi, E.1    North, W.P.T.2
  • 12
    • 67650246258 scopus 로고    scopus 로고
    • Ph.D. dissertation, Advanced Engineering and Manufacturing Laboratory, Department of Mechanical Engineering, Purdue School of Engineering and Technology
    • Dugla Z (2003) Prediction of dimensional accuracy in CNC milling using computational intelligence technique. Ph.D. dissertation, Advanced Engineering and Manufacturing Laboratory, Department of Mechanical Engineering, Purdue School of Engineering and Technology
    • (2003) Prediction of Dimensional Accuracy in CNC Milling Using Computational Intelligence Technique
    • Dugla, Z.1
  • 16
    • 0012750125 scopus 로고    scopus 로고
    • A comparison of support vector machines with artificial neural networks for the prediction of thermal errors in machine tools
    • R Ramesh MA Mannan AN Poo 2001 A comparison of support vector machines with artificial neural networks for the prediction of thermal errors in machine tools Trans NAMRI/SME XXIX 577 584
    • (2001) Trans NAMRI/SME , vol.29 , pp. 577-584
    • Ramesh, R.1    Mannan, M.A.2    Poo, A.N.3
  • 17
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Mozer MC, Jordan MI, and Petsche T (eds) Kaufmann San Mateo, CA
    • Vapnik V, Golowich SE, and Smola A (1996) Support vector method for function approximation, regression estimation, and signal processing. In: Mozer MC, Jordan MI, and Petsche T (eds) Advances in neural information processing systems. Kaufmann, San Mateo, CA, pp 281-287
    • (1996) Advances in Neural Information Processing Systems , pp. 281-287
    • Vapnik, V.1    Golowich, S.E.2    Smola, A.3
  • 18
    • 0003425664 scopus 로고    scopus 로고
    • ISIS Technical Report, Image Speech and Intelligent Systems Group, University of Southampton
    • Gunn S (1998) Support vector machines for classification and regression. ISIS Technical Report, Image Speech and Intelligent Systems Group, University of Southampton
    • (1998) Support Vector Machines for Classification and Regression
    • Gunn, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.